• Title/Summary/Keyword: PVP K-30

Search Result 64, Processing Time 0.023 seconds

Fabrication of axially aligned $TiO_2/PVP$ nanofibers ($TiO_2/PVP$ 나노섬유의 제조)

  • Lee, Se-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.30-34
    • /
    • 2007
  • [ $TiO_2/PVP$ ] nanofibers were electrospun by varying the collector grounding design to improve the axial alignment of fibers. The collectors are composed of two pieces of conductive substrates separated by a gap f3r the uniaxial alignment of fibers (X design). The collectors consisting of two sets of substrates placed by $90^{\circ}$ (XY design) equipped with a timer are also prepared for biaxial alignment of fibers. Both collectors show that the charged nanofibers are stretched to span across the gap between the electrodes. Experimental results reveal that the latter collector is more effective on the directionality of electrospun $TiO_2/PVP$ nanofibers due to the dissipation of accumulated electric charge between the collectors.

Characterization and Improved Dissolution Rate of Aceclofenac Solid Dispersion (아세클로페낙 고체분산체의 특성 및 용출률 개선)

  • Kim, Yun-Tae;Park, Hyun-Jin;Lee, Young-Hyun;Hong, Hee-Kyung;Eom, Shin;Kim, Yong-Ki;Lee, Eun-Yong;Choi, Myoung-Gyu;Lee, Jae-Jun;Cho, Yong-Baik;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.596-601
    • /
    • 2009
  • We prepared nanoparticles containing insoluble aceclofenac by the method of solid dispersions using spray dryer to improve solubility of aceclofenac. We used PVP-K30 as a water soluble carrier for the solid dispersion and poloxamer as a surfactant. Characterization of aceclofenac solid dispersion was performed by SEM, DSC, XRD and FT-IR. The results of SEM, DSC and XRD demonstrated that aceclofenac is amorphous in solid dispersion. The formation of salt by hydrogen bond between aceclofenac and PVP K-30 was confirmed by FT-IR. The dissolution rate measured in intestinal juice showed the method of solid dispersion improved aceclofenac solubility as compared with a conventional drug($Airtal^{(R)}$). In conclusion, the method of solid dispersion using spray dryer would improve solubility of aceclofenac in oral administration.

Characterization and Improvement of Dissolution Rate of Solid Dispersion of Celecoxib in PVP K30/Eudragit EPO (PVP K30/Eudragit EPO에 의한 셀레콕시브 고체분산체의 용출률 향상 및 특성)

  • Jeon, Dae Yeon;Jang, Ji Eun;Lee, Jeong Hwan;Yang, Jae Won;Park, Sang Mi;Lim, Dongkwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.434-440
    • /
    • 2014
  • We prepared nanoparticles containing insoluble celecoxib by the method of solid dispersions using a spray dryer to improve solubility of celecoxib. We used PVP K30 and Eudragit EPO as water-soluble carriers for the solid dispersion, and poloxamer 407 as a surfactant. Characterization of celecoxib solid dispersion was performed by scanning electron microscope (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The results of SEM, DSC and XRD demonstrated that celecoxib is amorphous in solid dispersion. The dissolution rate measured in intestinal juice showed that the method of solid dispersion improved celecoxib solubility as compared with a conventional drug (Celebres$^{(R)}$). In conclusion, solid dispersion formulation prepared by a spray dryer would improve the solubility of celecoxib in oral administration.

Effect of the Addition of Polyvinylpyrrolidone on In Vitro Development and Cell Number of Porcine Embryo after In Vitro Fertilizatin (Polyvinylpyrrolidone 첨가가 돼지 체외 수정란의 발달과 세포수에 미치는 영향)

  • Park Y.S.;Kim J.Y.;Park H.D.
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • In this study, we examined the effects of molecular weight, concentrations and treat the duration of polyvinylpyrrolidone (PVP) in vitro maturation (IVM) medium (Experiment 1), and the effect of PVP in IVM, in vitro fertilization (IVF) and in vitro culture (IVC) medium on the development and cell number of porcine embryos (Experiment 2). The base mediums were NCSU 23 solution for IVM, mTBM solution for IVF and PZM3 solution for IVC. In experiment 1, the development rates to 2 cell and blastocyst stage were not differ from the different molecular weight (MW), concentration and duration of PVP in IVM medium. However, the hatching rate of blastocyst was significantly higher in the group of MW 40,000, 0.5% and $0{\sim}44hr$ than in the other groups (p<0.05). In experiment 2, the results of IVM, IVF and IVC medium with (W) or without (W/O) 0.5% MW 40,000 PVP are follows. The development rate to 2 cell stage was highest in the group of W-W/O-W (p<0.05). The development rate to blastocyst and hatching rate was higher in the group of W-W/O-W and W-W/O-W/O than that of other treatments (p<0.05).

Development of Hydrogel for Decrease Protein Adsorption and Application to Intraocular Lens (단백질흡착 감소용 하이드로겔의 개발 및 인공수정체로의 적용)

  • Ko, Na Young;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The purpose of this study was to decrease the protein adsorption and improve the function of the hydrophobic acrylic Intraocular lens(IOL). Hydrophobic acrylic intraocular lenses were prepared by using ethyleneglycol phenyletheracrylate (EGPEA), styrene and 2-hydroxyethyl methacrylate (HEMA). Polyvinyl pyrrolidone (PVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were used as additives. Water contents, wettability, light transmittance and protein adsorption amount were measured to evaluate the physical properties of the intraocular lens. The water content and wettability of all samples containing additives were increased and the amount of protein adsorption decreased. In particular, samples containing MPC showed a further decrease in protein adsorption. The hydrophobic acrylic intraocular lens with PVP and MPC was found to improve the function of the intraocular lens by reducing the protein adsorption while having basic physical properties.

Rheological behavior and IPL sintering properties of conductive nano copper ink using ink-jet printing (전도성 나노 구리잉크의 잉크젯 프린팅 유변학적 거동 및 광소결 특성 평가)

  • Lee, Jae-Young;Lee, Do Kyeong;Nahm, Sahn;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.174-182
    • /
    • 2020
  • The printed electronics field using ink-jet printing technology is in the spotlight as a next-generation technology, especially ink-jet 3D printing, which can simultaneously discharge and precisely control various ink materials, has been actively researched in recent years. In this study, complex structure of an insulating layer and a conductive layer was fabricated with photo-curable silica ink and PVP-added Cu nano ink using ink-jet 3D printing technology. A precise photocured silica insulating layer was designed by optimizing the printing conditions and the rheological properties of the ink, and the resistance of the insulating layer was 2.43 × 1013 Ω·cm. On the photo-cured silica insulating layer, a Cu conductive layer was printed by controlling droplet distance. The sintering of the PVP-added nano Cu ink was performed using an IPL flash sintering process, and electrical and mechanical properties were confirmed according to the annealing temperature and applied voltage. Finally, it was confirmed that the resistance of the PVP-added Cu conductive layer was very low as 29 μΩ·cm under 100℃ annealing temperature and 700 V of IPL applied voltage, and the adhesion to the photo-cured silica insulating layer was very good.

Effect of Manufacturing Method and Acidifier on the Dissolution Rate of Carvedilol from Solid Dispersion Formulations

  • Lim, Dong-Kyun;Bae, Jeong-Woo;Song, Byung-Joo;Jo, Han-Su;Kim, Hyoung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.363-369
    • /
    • 2011
  • In this study, we demonstrated the release behavior of carvedilol with the content of polyvinylpyrrolidone K-30 (PVP K-30) and the effect of citric acid and fumaric acid as acidifiers on the release behavior of drug. In addition, it tries to inquire into the release behavior difference of the carvedilol according to the manufacturing method. The release behavior of the tablets was compared with Dilatrand$^{(R)}$ in the simulated gastric fluid (pH1.2). Differential scanning calorimeter (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were characterized for the physicochemical properties of the tablets. In case of mixing the carvedilol and PVP K-30, in case the ratio of the carvedilol and PVP K-30 was 1:5, the release behavior was the highest among. As well as the dissolution rate of tablets manufactured by lyophilization and rotary evaporator was higher than physical mixture. The dissolution rate of containing acidifiers was more improved. But, rather the excessive amount of the acidifier addition reduced the dissolution rate.

Improvement of Dissolution rate of Felodipine Using Solid Dispersion and its Sustained Release Oral Dosage Form (고체분산체에 의한 펠로디핀의 용출율 개선과 서방성 경구제제)

  • Gil, Young-Sig;Hong, Seok-Cheon;Yu, Chang-Hun;Shin, Hyun-Jong;Kim, Jong-Sung
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.185-190
    • /
    • 2002
  • To improve the solubility of poorly water-soluble drug and to develop a sustained release tablets, the need for the technique, the formation of solid dispersion with polymeric materials that can potentially enhance the dissolution rate and extent of drug absorption was considered in this study. The 1:1, 1:4, and 1:5 solid dispersions were prepared by spray drying method using PVP K30, ethanol and methylene chloride. The dissolution test was carried out at in phosphate buffer solution at $37^{\circ}C$ in 100 rpm. Solid dispersed drugs were examined using differential scanning calorimetry and scanning electron microscopy, wherein it was found that felodipine is amorphous in the PVP K30 solid dispersion. Felodifine SR tablets were prepared by direct compressing the powder mixture composed of solid dispersed felodipine, lactose, Eudragit and magnesium stearate using a single punch press. In order to develop a sustained-release preparation containing solid dispersed felodipine, a comparative dissolution study was done using commercially existing product as control. The dissolution rate of intact felodipine, solid dispersed felodipine and its physical mixture, respectively, were compared by the dissolution rates for 30 minutes. The dissolution rates of felodipine for 30 minutes from 1:1, 1:4, 1:5 PVP K30 solid dispersion were 70%, 78% and 90%. However, dissolution rate offelodipine from the physical mixture was 5% of drug for 30 minutes. Our developed product Felodipine SR Tablet showed dissolution of 17%, 50% and 89% for 1, 4, and 7 hours. This designed oral delivery system is easy to manufacture, and drug releases behavior is highly reproducible and offers advantages over the existing commercial product. The dissolution rate of felodipine was significantly enhanced, following the formation of solid dispersion. The solid dispersion technique with water-soluble polymer could be used to develop a solid dispersed felodipine SR tablet.

Plasma-Induced Grafting of Poly(N-vinyl-2-pyrrolidone) onto Polypropylene Surface (폴리프로필렌 표면 위에 폴리비닐피롤리돈의 플라즈마 유도 그래프트 공중합)

  • Ji, Han-Sol;Jung, Si-In;Hur, Ho;Choi, Ho-Suk;Kim, Jae-Ha;Park, Han-Oh
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.302-308
    • /
    • 2012
  • The objective of this study is to investigate optimum reaction conditions for the grafting of poly($N$-vinyl- 2-pyrrolidone) (PVP) onto the surface of plasma-treated polypropylene film. The plasma treatment conditions were fixed as 200 W rf power, 6 LPM Ar flow rate, 30 sec treatment time, and 5 min exposure time after treatment. For graft copolymerization, we investigated the change of grafting degree with respect to reaction time, reaction temperature and $N$-vinyl-2-pyrrolidone concentration. Maximum grafting degree was obtained at the conditions of 6 h reaction time, $90^{\circ}C$ reaction temperature, and 40% $N$-vinyl-2-pyrrolidone concentration. The introduction of PVP was confirmed by ATR-FTIR, XPS, and SEM analysis.