• Title/Summary/Keyword: PV power

Search Result 1,501, Processing Time 0.033 seconds

Development of Fault Diagnosis Algorithm using Correlation Analysis and ELM (상관성 분석과 ELM을 이용한 태양광 고장진단 알고리즘 개발)

  • Lim, Jae-Yoon;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.204-209
    • /
    • 2016
  • It is difficult to establish accurate modeling of PV power system because of various uncertainty. However, it is important work to modeling of PV for fault diagnosis. This paper proposes modeling and fault diagnosis method using correlation analysis and ELM(Extreme Learning Machine). Rather than using total data, we select optimal time interval with higher corelation between PV power and solar irradiation. Also, we use average value during 60 minute to avoid rapid variation of PV power. To show the effectiveness of the proposed method, we performed various experiments by dataset.

Comparison of MPPT Control Method Characteristic for Stand-alone PV System (독립형 태양광 발전시스템의 MPPT 제어기법 특성비교)

  • Lee, Yong-Sik;Kim, Nam-In;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-79
    • /
    • 2012
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. This paper proposes a variable step size MPPT algorithm which can improve the MPPT speed and accuracy. Depending on insolation and temperature, the MPPT controller gives optimized step size. The effectiveness of the proposed system is verified thorough PSIM simulation and experiments on a 50[W] prototype. The experimental results confirm that the PV power of the improved P&O method is higher than that of the traditional P&O method.

A high efficient PV system using series connection of DC-DC converter's output with photovoltaic panel (광전지 패널과 DC-DC 컨버터 출력의 직렬 접속을 이용한 고효율 PV 시스템)

  • Kim, Ho-Sung;Kim, Jong-Hyun;Min, Byung-Duk;Yoo, Dong-Wook;Hong, Ji-Tae;Lee, Dong-Gil;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1146-1147
    • /
    • 2008
  • PV Power Conditioning System (PCS) must have high conversion and low cost. Generally, PV PCS uses either a single converter or multilevel module integrated converter (MIC). Each of these approaches has both advantage and disadvantage. For a high conversion efficiency and low cost of PV module, this paper proposes series connection of module integrated DC-DC converter's output with PV panel. Output voltage of PV panel is connected to the output capacitor of flyback converter. Thus, converter's output voltage is added to the output voltage of PV panel. Isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces power level of DC-DC converter and enhances the energy conversion efficiency compared with conventional DC-DC converter.

  • PDF

Operational Characteristic Analysis and Proposal of Senseless MPPT Control Scheme for PV Generation System (PV Output Senseless MPPT Control의 제안 및 운전특성 분석)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1157-1158
    • /
    • 2006
  • The key of this study is the technical development to maximize electric energy production through PV generation system. Under a conventional MPPT control method, both input voltage and input current coming out from PV array had to be feed backed. Then, the system has complex structure and may fail to track Maximum Power Point of PV array when weather conditions changed urgently. A PV output senseless MPPT control for PV generation system is possible to solve the mentioned above. The best advantage is that the current flowing into load is the only one considerable factor. In case of a huge photovoltaic generation system, it can be operated much more safely than a conventional system. In this paper, a novel PV output senseless MPPT control for the PV generation system was proposed and applied to the manufactured system and the experimental results were shown. Authors are sure that it is the most useful method to maximize power from photovoltaic system with only a feedback of load current.

  • PDF

Load Pattern Considerations of The Photovoltaic Lighting System by Using Computer-based Date Acquisition System (컴퓨터기반의 DAS를 적용한 태양광 조명설비의 운용패턴 고찰)

  • 황명근;허창수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Comparing to the conventional power systems, PV(photovoltaic) outdoor lighting system applications are evaluated as the most economical application. In this paper, we installed two PV lighting systems, which uses LPS(low pressure sodium) and electrodeless lame as their loads, and applied a computer-based data acquisition system using the Labview program for monitering purpose and effective operations, considering battery life time Also, we observed the generated power from the solar array, and energy losses comparing to its installed capacity. Because most PV system performance procedures have looked at the performance of the individual components and have deficiency of addressing how the integrated system works, we confirmed the decrease possibility of the solar amy capacity after analyzing the performance of the installed PV lighting systems.

Design of On-Chip Solar Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 온칩 빛에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jun-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.425-428
    • /
    • 2011
  • This paper presents a micro-scale solar energy harvesting circuit with a simple MPPT control. Solar Energy is harvested using a small off-chip PV cell generating output voltages under 0.5V instead of an on-chip PV cell. A simple MPPT is implemented using a pilot PV cell and utilizing the relationship between the open-circuit voltage of a PV cell ($V_{OC}$) and its MPP voltage ($V_{MPP}$). With applying the MPPT control, the designed circuit delivers the MPP voltage to load even though the loads is heavy such that the load circuit can operate properly. The proposed circuit is designed in TSMC 0.18um CMOS process.

  • PDF

Development of Improved P&O Algorithm of PV System Considering Insolation variation (일사량 변화를 고려한 PV 시스템의 개선된 P&O 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.166-176
    • /
    • 2010
  • The output characteristics of photovoltaic(PV) arrays are nonlinear and are affected by the temperature and solar insolation of cells. Maximum power point tracking(MPPT) methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. This paper proposes a novel maximum power point tracking(MPPT) control algorithm considering insolation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe(P&O) method and constant voltage(CV) method. The proposed method is simulated under varying operating conditions. The effectiveness of these different MPPT methods is investigated thoroughly by PSIM simulation. The simulation results show that this proposed method provides better performance than conventional methods at a variable insolation without self-excited vibration of the power. By the simulation results, the validity of the proposed HB method is proved.

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

Novel control algorithm for smart PCS with harmonics and reactive power compensation (고조파와 무효전력 보상기능을 가지는 Smart PCS의 새로운 제어 알고리즘)

  • Seo, Hyo-Ryong;Jang, Seong-Jae;Park, Sang-Soo;Kim, Sang-Yong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1053_1054
    • /
    • 2009
  • A significant number of renewable energy systems have been connected to the grids as supplement power source. The renewable energy systems require control algorithm to maintain the power-supply reliability and quality. This paper proposes a novel control algorithm for smart Power Conditioning System (PCS) with harmonics and reactive power compensation. The smart PCS is used to feed Photovoltaic (PV) power to utility and compensate harmonics and reactive power at the same time. The experimentation is carried out on the proposed grid-connected PV generation system, and controlled by digital signal processor. The grid-connected PV generation system injects PV energy into the grid and performs as Active Filter (AF) and Static Synchronous Compensator (STATCOM) without additional devices. The experiment results show that the proposed control algorithm is effective for smart PCS with harmonics and reactive power compensation.

  • PDF

Test Results Grid Connection of 120 kW Power Generation System (120 kW급 태양광 발전시스템 설치 및 실 계통연계 운전 결과 평가)

  • Hwang, Jung-Hee;Ahn, Kyo-Sang;Lim, Hee-Cheon;Kim, Su-Chang;Kim, Sin-Sub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.338-346
    • /
    • 2006
  • In this paper, the test results of medium-size(120 kW class) PV system which was installed in the Taeahn thermal power station of Korea Western Power Co., Ltd., were summarized for developing the practical technology to applicate high voltage grid connection PV system. The 120 kW photovoltaic system which was consisted of 1,300 modules, PCS, and 150 kVA transformer station has been operated since Aug. 05, 2005. For verifying the modeling results of PV system, the operation data was compared with modeling results which was executed commercial PSCAD/EMTD and Psim tools. An equivalent circuit model of a solar cell has been also used for solar array modeling. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter(VIS) and its current control scheme have been analyzed by using P&O (perturbation and Observation) MPPT algorithms technique.