• Title/Summary/Keyword: PTX

Search Result 87, Processing Time 0.033 seconds

Improved Antitumor Efficacy of Hyaluronic Acid-Complexed Paclitaxel Nanoemulsions in Treating Non-Small Cell Lung Cancer

  • Kim, Joo-Eun;Park, Young-Joon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • Paclitaxel (PTX) is a effectively chemotherapeutic agent which is extensively able to treat the non-small cell lung, pancreatic, breast and other cancers. But it is a practically insoluble drug with water solubility less than $1{\mu}g/mL$, which restricts its therapeutic application. To overcome the problem, hyaluronic acid-complexed paclitaxel nanoemulsions (HPNs) were prepared by ionic complexation of paclitaxel (PTX) nanoemulsions and hyaluronic acid (HA) to specifically target non-small cell lung cancer. HPNs were composed of ${\small{DL}}-{\alpha}$-tocopheryl acetate, soybean oil, polysorbate 80, ferric chloride, and HA and fabricated by high-pressure homogenization. The HPNs were $85.2{\pm}7.55nm$ in diameter and had a zeta potential of $-35.7{\pm}0.25mV$. The encapsulation efficiency was almost 100%, and the PTX content was 3.0 mg/mL. We assessed the in vivo antitumor efficacy of the HPNs by measuring changes in tumor volume and body weight in nude mice transplanted with CD44-overexpressing NCI-H460 xenografts and treated with a bolus dose of saline, $Taxol^{(R)}$, PTX nanoemulsions (PNs), or HPNs at a dose of 25 mg/kg. Suppression of cancer cell growth was higher in the PN- and HPN-treated groups than in the $Taxol^{(R)}$ group. In particular, HPN treatment dramatically inhibited tumor growth, likely because of the specific tumor-targeting affinity of HA for CD44-overexpressed cancer cells. The loss of body weight and organ weight did not vary significantly between the groups. It is suggest that HPNs should be used to effective nanocarrier system for targeting delivery of non-small cell lung cancer overexpressing CD44 and high solubilization of poorly soluble drug.

Differential Modulatory Effects of Cholera Toxin and Pertussis Toxin on Pain Behavior Induced by TNF-${\alpha}$, Interleukin-1${\beta}$ and Interferon-${\gamma}$ Injected Intrathecally

  • Kwon, Min-Soo;Shim, Eon-Jeong;Seo, Young-Jun;Choi, Seong-Soo;Lee, Jin-Young;Lee, Han-Kyu;Suh, Hong-Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.582-586
    • /
    • 2005
  • The present study was designed to characterize the possible roles of spinally located cholera toxin (CTX)- and pertussis toxin (PTX)-sensitive G-proteins in pro- inflammatory cy tokine induced pain behaviors. Intrathecal injection of tumor necrosis factor-a (TNF-${\alpha}$; 100 pg), interleukin-1${\beta}$ (IL-1${\beta}$ 100 pg) and interferon-${\gamma}$ (INF-${\gamma}$; 100 pg) showed pain behavior. Intrathecal pretreatment with CTX (0.05, 0.1 and 0.5 mg) attenuated pain behavior induced by TNF-${\alpha}$ and INF-${\gamma}$ administered intrathecally. But intrathecal pretreatment with CTX (0.05, 0.1 and 0.5${\mu}g$) did not attenuate pain behavior induced by IL-1${\beta}$. On the other hand, intrathecal pretreatment with PTX further increased the pain behavior induced by TNF-${\alpha}$ and IL-1${\beta}$ administered intrathecally, especially at the dose of 0.5 ${\mu}g$. But intrathecal pretreatment with PTX did not affect pain behavior induced by INF-${\gamma}$. Our results suggest that, at the spinal cord level, CTX- and PTX-sensitive G-proteins appear to play important roles in modulating pain behavior induced by pro-inflammatory cytokines administered spinally. Furthermore, TNF-${\alpha}$, IL-1${\beta}$ arid INF-${\gamma}$ administered spinally appear to produce pain behavior by different mechanisms.

Combination of Curcumin and Paclitaxel-loaded Solid Lipid Nanoparticles to Overcome Multidrug Resistance

  • Li, Rihua;Xu, Wenting;Eun, Jae-Soon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.381-386
    • /
    • 2011
  • Multi-drug resistance (MDR) has been known as a major hurdle in cancer chemotherapy. One of the most clinically significant causes of MDR was the efflux of anticancer agents mediated by p-glycoprotein (p-gp) over-expressed in MDR cancer cells. To overcome MDR, there have been several strategies such as co-administration with p-gp inhibitors and encapsulation of anticancer drugs into drug delivery systems. In the present study, curcumin was evaluated for its potential as p-gp inhibitor and MDR reversal activity when combined with paclitaxel incorporated into lipid nanoparticles (PTX/LN). Western blot assay showed curcumin did not modulate the level of p-gp expression in MCF-7/ADR which is a MDR variant of human breast cancer cell line, MCF-7, and over-expresses p-gp. However, curcumin inhibited p-gp-mediated efflux of calcein in a dose-dependent manner even though it showed lower activity compared to verapamil, a well-known p-gp inhibitor. Incorporation of paclitaxel into lipid nanoparticles partially recovered the anticancer activity of paclitaxel in MCF-7/ADR. The combined use of curcumin and PTX/LN exhibited further full reversal of MDR, suggesting susceptibility of PTX/LN to the efflux system. In conclusion, combined approach of using p-gp inhibitors and incorporation of the anticancer agents into nano-delivery systems would be an efficient strategy to overcome MDR.

G Protein Mediated Hatching Regulation in the Mouse Embryo

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Hatching occurred in the time dependent manners and strictly controlled. Although, the hatching processes are under the control of muti-embryotrophic factors and the expressed G proteins of cell generate integrated activation, the knowledge which GPCRs are expressed during hatching stage embryos are very limited. In the present study, which G proteins are involved was examined during blastocyst development to the hatching stage. The early-, expanded-, and lobe-stage blastocysts were treated with various $G_{\alpha}$ activators and H series inhibitors, and examined developmental patterns. Pertusis toxin (PTX) improved the hatching rate of the early-stage blastocyst and lobe-formed embryos. Cholera toxin (CTX) suppressed the hatching of the early-stage blastocyst and expanded embryos. The effects of toxins on hatching and embryo development were changed by the H7 and H8. These results mean that PTX mediated GPCRs activation is signaling generator in the nick or pore formation in the ZP. In addition, PTX mediated GPCR activation induces the locomotion of trophectoderm for the escaping. CTX mediate GPCRs activation is the cause of suppression of hatching processes. Based on these data, it is suggested that various GPCRs are expressed in the periimplantation stage embryos and the integration of the multiple signals decoding of various signals in a spatial and temporal manner regulate the hatching process.

The effects of pentoxifylline and tocopherol in jaw osteomyelitis

  • Seo, Mi Hyun;Eo, Mi Young;Myoung, Hoon;Kim, Soung Min;Lee, Jong Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Objectives: Pentoxifylline (PTX) is a methylxanthine derivative that has been implicated in the pathogenesis of peripheral vessel disease and intermittent lameness. The purpose of this study was to investigate the effect of PTX and tocopherol in patients diagnosed with osteoradionecrosis (ORN), bisphosphonate-related osteonecrosis of the jaw (BRONJ), and chronic osteomyelitis using digital panoramic radiographs. Materials and Methods: This study was performed in 25 patients who were prescribed PTX and tocopherol for treatment of ORN, BRONJ, and chronic osteomyelitis between January 2014 and May 2018 in Seoul National University Dental Hospital. Radiographic densities of the dental panorama were compared prior to starting PTX and tocopherol, at 3 months, and at 6 months after prescription. Radiographic densities were measured using Adobe Photoshop CS6 (Adobe System Inc., USA). Blood sample tests showing the degree of inflammation at the initial visit were considered the baseline and compared with results after 3 to 6 months. Statistical analysis was performed using the Mann-Whitney test and repeated measurement ANOVA using IBM SPSS 23.0 (IBM Corp., USA). Results: Eight patients were diagnosed with ORN, nine patients with BRONJ, and the other 8 patients with chronic osteomyelitis. Ten of the 25 patients were men, average age was 66.32±14.39 years, and average duration of medication was 151.8±80.65 days (range, 56-315 days). Statistically significant increases were observed in the changes between 3 and 6 months after prescription (P<0.05). There was no significant difference between ORN, BRONJ, and chronic osteomyelitis. Only erythrocyte sedimentation rate (ESR) was statistically significantly lower than before treatment (P<0.05) among the white blood cell (WBC), ESR, and absolute neutrophil count (ANC). Conclusion: Long-term use of PTX and tocopherol can be an auxiliary method in the treatment of ORN, BRONJ, or chronic osteomyelitis in jaw.

Efficacy of Taxane-Based Regimens in a First-line Setting for Recurrent and/or Metastatic Chinese Patients with Esophageal Cancer

  • Jiang, Chang;Liao, Fang-Xin;Rong, Yu-Ming;Yang, Qiong;Yin, Chen-Xi;He, Wen-Zhuo;Cai, Xiu-Yu;Guo, Gui-Fang;Qiu, Hui-Juan;Chen, Xu-Xian;Zhang, Bei;Xia, Liang-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5493-5498
    • /
    • 2014
  • Objective: To compare the efficacy of taxane-based regimens in the first line setting retrospectively in Chinese patients with recurrent and/or metastatic esophageal cancer. Methods: We analyzed 102 recurrent and/or metastatic esophageal cancer patients who received taxanes-based regimens in a first-line setting from January 2009 to December 2013. Sixteen (15.7%) patients were administered Nab-PTX based chemotherapy and 86 patients (84.3%) received paclitaxel (PTX) or docetaxel (DTX) based chemotherapy. Patients in the PTX/DTX group could be further divided into TP (71 patients) and TPF (15 patients) groups. Results: The objective response rate (ORR) of all patients was 20.6%, and the disease control rate (DCR) was 67.6%. The median overall survival (OS) was 10.5 months (95% CI 10.1-16.4) and the median progression-free survival (PFS) was 6.04 months (95% CI 5.09-7.91). The DCR was higher in the TPF group than the TP group (93.3% vs. 59.1%; p = 0.015 ). There were no significant differences in ORR, OS, and PFS among Nab-PTX, TPF and TP groups. Conclusions: The three regimens of Nab-PTX based, TP and TPF proved active in a first line setting of Chinese patients with recurrent and/or metastatic esophageal cancer, and should thus be regarded as alternative treatments.

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

Stimulatory Effects of cyclic AMP on Vitellogenin Induction by Estradiol-17$\beta$ in the Primary Culture of Hepatocytes in the Rainbow Trout Oncorhynchus mykiss

  • Yeo In-Kyu
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.153-158
    • /
    • 1998
  • Effects of cyclic (c) AMP and G-protein related reagents (3-isobutyl-l-methyxanthine (IBMX), Forskolin (FSK), cholera toxin (CTX), and pertussis toxin (PTX≫ on estradiol-17$\beta$ induced vitellogenin (VTG) induction were examined in primary hepatocyte cultures in rainbow trout Oncorhynchus mykiss. The addition of IBMX, FSK, or CTX to the incubation medium markedly increased VTG production, while PTX was not effective in stimulating the production. It is well known that cAMP regulates phosphorylation and dephosphorylation through mediation of protein kinase A. These results suggest that VTG production is highly dependent on cAMP state in hepatocytes because of its highly phosphorylated nature.

  • PDF

The mechanism of sphingosine-1-phosphate induced contraction in cat esophageal smooth muscle cells.

  • Choi, Tae-Sik;Lee, Tai-Sang;Woo, Jae-Gwang;Kim, Yong-Sung;Sohn, Uy-Dong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.77.3-78
    • /
    • 2003
  • We previously shown that sphingosylphosphorylcholine, a lysophosphatidic acid, produced contraction in isolated single cells of cat ilium. We investigated the mechanism of sphingosine-1-phosphate (S1P)-induced contraction of circular smooth muscle cells in cat esophagus. S1P produced esophageal contraction in a dose dependent manner. The maximal contraction (l0$\^$-7/ M) induced at 1min. Pertusis toxin (PTX) inhibited contraction induced by S1P, suggesting that the contraction is mediated to a PTX-sensitive G-protein. (omitted)

  • PDF