Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.261

Improved Antitumor Efficacy of Hyaluronic Acid-Complexed Paclitaxel Nanoemulsions in Treating Non-Small Cell Lung Cancer  

Kim, Joo-Eun (College of Pharmacy, Ajou University)
Park, Young-Joon (College of Pharmacy, Ajou University)
Publication Information
Biomolecules & Therapeutics / v.25, no.4, 2017 , pp. 411-416 More about this Journal
Abstract
Paclitaxel (PTX) is a effectively chemotherapeutic agent which is extensively able to treat the non-small cell lung, pancreatic, breast and other cancers. But it is a practically insoluble drug with water solubility less than $1{\mu}g/mL$, which restricts its therapeutic application. To overcome the problem, hyaluronic acid-complexed paclitaxel nanoemulsions (HPNs) were prepared by ionic complexation of paclitaxel (PTX) nanoemulsions and hyaluronic acid (HA) to specifically target non-small cell lung cancer. HPNs were composed of ${\small{DL}}-{\alpha}$-tocopheryl acetate, soybean oil, polysorbate 80, ferric chloride, and HA and fabricated by high-pressure homogenization. The HPNs were $85.2{\pm}7.55nm$ in diameter and had a zeta potential of $-35.7{\pm}0.25mV$. The encapsulation efficiency was almost 100%, and the PTX content was 3.0 mg/mL. We assessed the in vivo antitumor efficacy of the HPNs by measuring changes in tumor volume and body weight in nude mice transplanted with CD44-overexpressing NCI-H460 xenografts and treated with a bolus dose of saline, $Taxol^{(R)}$, PTX nanoemulsions (PNs), or HPNs at a dose of 25 mg/kg. Suppression of cancer cell growth was higher in the PN- and HPN-treated groups than in the $Taxol^{(R)}$ group. In particular, HPN treatment dramatically inhibited tumor growth, likely because of the specific tumor-targeting affinity of HA for CD44-overexpressed cancer cells. The loss of body weight and organ weight did not vary significantly between the groups. It is suggest that HPNs should be used to effective nanocarrier system for targeting delivery of non-small cell lung cancer overexpressing CD44 and high solubilization of poorly soluble drug.
Keywords
Hyaluronic acid-complexed paclitaxel nanoemulsions; Specific targeting; Antitumor efficacy; Non-Small cell lung cancer;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y. and Lu, W. (2010) Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J. Control. Release 143, 136-142.   DOI
2 Zhao, D., Gong, T., Fu, Y., Nie, Y., He, L. L., Liu, J. and Zhang, Z. R. (2008) Lyophilized Cheliensisin A submicron emulsion for intravenous injection: characterization, in vitro and in vivo antitumor effect. Int. J. Pharm. 357, 139-147.   DOI
3 Zhao, P., Wang, H., Yu, M., Cao, S., Zhang, F., Chang, J. and Niu, R. (2010) Paclitaxel-loaded, folic-acid-targeted and TAT-peptideconjugated polymeric liposomes: in vitro and in vivo evaluation. Pharm. Res. 27, 1914-1926.   DOI
4 Zhao, P., Wang, H., Yu, M., Liao, Z., Wang, X., Zhang, F., Ji, W., Wu, B., Han, J., Zhang, H., Wang, H., Chang, J. and Niu, R. (2012) Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 81, 248-256.   DOI
5 Journo-Gershfeld, G., Kapp, D., Shamay, Y., Kopeček, J. and David, A. (2012) Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm. Res. 29, 1121-1133.   DOI
6 Baek, J. S., Shin, S. C. and Cho, C. W. (2012) Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. Int. J. Pharm. Investig. 42, 279-283.   DOI
7 Battistini, F. D., Flores-Martin, J., Olivera, M. E., Genti-Raimondi, S. and Manzo, R. H. (2014) Hyaluronan as drug carrier. The in vitro efficacy and selectivity of Hyaluronan-Doxorubicin complexes to affect the viability of overexpressing CD44 receptor cells. Eur. J. Pharm. Sci. 65, 122-129.   DOI
8 Danhier, F., Vroman, B., Lecouturier, N., Crokart, N., Pourcelle, V., Freichels, H., Jerôme, C., Marchand-Brynaert, J., Feron, O. and Preat, V. (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J. Control. Release 140, 166-173.   DOI
9 Davis, M. E., Chen, Z. G. and Shin, D. M. (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771-782.   DOI
10 Fang, J., Nakamura, H. and Maeda, H. (2011) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136-151.   DOI
11 Kim, J. E. and Park, Y. J. (2016) High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf. B Biointerfaces. [Epub ahead of print].
12 Matsubara, Y., Katoh, S., Taniguchi, H., Oka, M., Kadota, J. and Kohno, S. (2000) Expression of CD44 variants in lung cancer and its relationship to hyaluronan binding. J. Int. Med. Res. 28, 78-90.   DOI
13 Kirtane, A. R., Narayan, P., Liu, G. and Panyam, J. (2016) Polymersurfactant nanoparticles for improving oral bioavailability of doxorubicin. Int. J. Pharm. Investig. [Epub ahead of print].
14 Liebmann, J., Cook, J. A. and Mitchell, J. B. (1993) Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 342, 1428.
15 Liu, D., Liu, F., Liu, Z., Wang, L. and Zhang, N. (2011a) Tumor specific delivery therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm. 8, 2291-2301.   DOI
16 Liu, D., Liu, Z., Wang, L., Zhang, C. and Zhang, N. (2011b) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces 85, 262-269.   DOI
17 Liu, P., Situ, J. Q., Li, W. S., Shan, C. L., You, J., Yuan, H., Hu, F. Q. and Du, Y. Z. (2015) High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine 11, 855-866.   DOI
18 Mercê, A. L., Marques Carrera, L. C., Santos Romanholi, L. K. and Lobo Recio, M. A. (2002) Aqueous and solid complexes of iron (III) with hyaluronic acid: potentiometric titrations and infrared spectroscopy studies. J. Inorg. Biochem. 89, 212-218.   DOI
19 Mizrahy, S., Raz, S. R., Hasgaard, M., Liu, H., Soffer-Tsur, N., Cohen, K., Dvash, R., Landsman-Milo, D., Bremer, M. G., Moghimi, S. M. and Peer, D. (2011) Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J. Control. Release 156, 231-238.   DOI
20 Orr, G. A., Verdier-Pinard, P., McDaid, H. and Horwitz, S. B. (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280-7295.   DOI
21 Othman, T., Goto, S., Lee, J. B., Taimura, A., Matsumoto, T. and Kosaka, M. (2001) Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology 62, 208-212.   DOI
22 Park, J. H., Cho, H. J., Yoon, H. Y., Yoon, I. S., Ko, S. H., Shim, J. S., Cho, J. H., Park, J. H., Kim, K., Kwon, I. C. and Kim, D. D. (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release 174, 98-108.   DOI
23 Sim, T., Lim, C., Hoang, N. H., Joo, H., Lee, J. W., Kim, D.-w., Lee, E. S., Youn, Y. S., Kim, J. O. and Oh, K. T. (2016) Nanomedicines for oral administration based on diverse nanoplatform. Int. J. Pharm. Investig. 46, 351-362.   DOI
24 Singla, A. K., Garg, A. and Aggarwal, D. (2002) Paclitaxel and its formulations. Int. J. Pharm. 235, 179-192.   DOI
25 Yang, X. Y., Li, Y. X., Li, M., Zhang, L., Feng, L. X. and Zhang, N. (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 334, 338-345.   DOI
26 Xin, D., Wang, Y. and Xiang, J. (2010) The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm. Res. 27, 380-389.   DOI
27 Xiong, Y., Zhao, Y., Miao, L., Lin, C. M. and Huang, L. (2016) Codelivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J. Control. Release. 244, 63-73.   DOI