DOI QR코드

DOI QR Code

Improved Antitumor Efficacy of Hyaluronic Acid-Complexed Paclitaxel Nanoemulsions in Treating Non-Small Cell Lung Cancer

  • Received : 2016.11.24
  • Accepted : 2016.12.30
  • Published : 2017.07.01

Abstract

Paclitaxel (PTX) is a effectively chemotherapeutic agent which is extensively able to treat the non-small cell lung, pancreatic, breast and other cancers. But it is a practically insoluble drug with water solubility less than $1{\mu}g/mL$, which restricts its therapeutic application. To overcome the problem, hyaluronic acid-complexed paclitaxel nanoemulsions (HPNs) were prepared by ionic complexation of paclitaxel (PTX) nanoemulsions and hyaluronic acid (HA) to specifically target non-small cell lung cancer. HPNs were composed of ${\small{DL}}-{\alpha}$-tocopheryl acetate, soybean oil, polysorbate 80, ferric chloride, and HA and fabricated by high-pressure homogenization. The HPNs were $85.2{\pm}7.55nm$ in diameter and had a zeta potential of $-35.7{\pm}0.25mV$. The encapsulation efficiency was almost 100%, and the PTX content was 3.0 mg/mL. We assessed the in vivo antitumor efficacy of the HPNs by measuring changes in tumor volume and body weight in nude mice transplanted with CD44-overexpressing NCI-H460 xenografts and treated with a bolus dose of saline, $Taxol^{(R)}$, PTX nanoemulsions (PNs), or HPNs at a dose of 25 mg/kg. Suppression of cancer cell growth was higher in the PN- and HPN-treated groups than in the $Taxol^{(R)}$ group. In particular, HPN treatment dramatically inhibited tumor growth, likely because of the specific tumor-targeting affinity of HA for CD44-overexpressed cancer cells. The loss of body weight and organ weight did not vary significantly between the groups. It is suggest that HPNs should be used to effective nanocarrier system for targeting delivery of non-small cell lung cancer overexpressing CD44 and high solubilization of poorly soluble drug.

Keywords

References

  1. Baek, J. S., Shin, S. C. and Cho, C. W. (2012) Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. Int. J. Pharm. Investig. 42, 279-283. https://doi.org/10.1007/s40005-012-0038-z
  2. Battistini, F. D., Flores-Martin, J., Olivera, M. E., Genti-Raimondi, S. and Manzo, R. H. (2014) Hyaluronan as drug carrier. The in vitro efficacy and selectivity of Hyaluronan-Doxorubicin complexes to affect the viability of overexpressing CD44 receptor cells. Eur. J. Pharm. Sci. 65, 122-129. https://doi.org/10.1016/j.ejps.2014.09.008
  3. Danhier, F., Vroman, B., Lecouturier, N., Crokart, N., Pourcelle, V., Freichels, H., Jerôme, C., Marchand-Brynaert, J., Feron, O. and Preat, V. (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J. Control. Release 140, 166-173. https://doi.org/10.1016/j.jconrel.2009.08.011
  4. Davis, M. E., Chen, Z. G. and Shin, D. M. (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771-782. https://doi.org/10.1038/nrd2614
  5. Fang, J., Nakamura, H. and Maeda, H. (2011) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136-151. https://doi.org/10.1016/j.addr.2010.04.009
  6. Journo-Gershfeld, G., Kapp, D., Shamay, Y., Kopeček, J. and David, A. (2012) Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm. Res. 29, 1121-1133. https://doi.org/10.1007/s11095-012-0672-1
  7. Kim, J. E. and Park, Y. J. (2016) High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf. B Biointerfaces. [Epub ahead of print].
  8. Kirtane, A. R., Narayan, P., Liu, G. and Panyam, J. (2016) Polymersurfactant nanoparticles for improving oral bioavailability of doxorubicin. Int. J. Pharm. Investig. [Epub ahead of print].
  9. Liebmann, J., Cook, J. A. and Mitchell, J. B. (1993) Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 342, 1428.
  10. Liu, D., Liu, F., Liu, Z., Wang, L. and Zhang, N. (2011a) Tumor specific delivery therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm. 8, 2291-2301. https://doi.org/10.1021/mp200402e
  11. Liu, D., Liu, Z., Wang, L., Zhang, C. and Zhang, N. (2011b) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces 85, 262-269. https://doi.org/10.1016/j.colsurfb.2011.02.038
  12. Liu, P., Situ, J. Q., Li, W. S., Shan, C. L., You, J., Yuan, H., Hu, F. Q. and Du, Y. Z. (2015) High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine 11, 855-866. https://doi.org/10.1016/j.nano.2015.02.002
  13. Matsubara, Y., Katoh, S., Taniguchi, H., Oka, M., Kadota, J. and Kohno, S. (2000) Expression of CD44 variants in lung cancer and its relationship to hyaluronan binding. J. Int. Med. Res. 28, 78-90. https://doi.org/10.1177/147323000002800203
  14. Mercê, A. L., Marques Carrera, L. C., Santos Romanholi, L. K. and Lobo Recio, M. A. (2002) Aqueous and solid complexes of iron (III) with hyaluronic acid: potentiometric titrations and infrared spectroscopy studies. J. Inorg. Biochem. 89, 212-218. https://doi.org/10.1016/S0162-0134(01)00422-6
  15. Mizrahy, S., Raz, S. R., Hasgaard, M., Liu, H., Soffer-Tsur, N., Cohen, K., Dvash, R., Landsman-Milo, D., Bremer, M. G., Moghimi, S. M. and Peer, D. (2011) Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J. Control. Release 156, 231-238. https://doi.org/10.1016/j.jconrel.2011.06.031
  16. Orr, G. A., Verdier-Pinard, P., McDaid, H. and Horwitz, S. B. (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280-7295. https://doi.org/10.1038/sj.onc.1206934
  17. Othman, T., Goto, S., Lee, J. B., Taimura, A., Matsumoto, T. and Kosaka, M. (2001) Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology 62, 208-212. https://doi.org/10.1159/000056096
  18. Park, J. H., Cho, H. J., Yoon, H. Y., Yoon, I. S., Ko, S. H., Shim, J. S., Cho, J. H., Park, J. H., Kim, K., Kwon, I. C. and Kim, D. D. (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release 174, 98-108. https://doi.org/10.1016/j.jconrel.2013.11.016
  19. Sim, T., Lim, C., Hoang, N. H., Joo, H., Lee, J. W., Kim, D.-w., Lee, E. S., Youn, Y. S., Kim, J. O. and Oh, K. T. (2016) Nanomedicines for oral administration based on diverse nanoplatform. Int. J. Pharm. Investig. 46, 351-362. https://doi.org/10.1007/s40005-016-0255-y
  20. Singla, A. K., Garg, A. and Aggarwal, D. (2002) Paclitaxel and its formulations. Int. J. Pharm. 235, 179-192. https://doi.org/10.1016/S0378-5173(01)00986-3
  21. Xin, D., Wang, Y. and Xiang, J. (2010) The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm. Res. 27, 380-389. https://doi.org/10.1007/s11095-009-9997-9
  22. Xiong, Y., Zhao, Y., Miao, L., Lin, C. M. and Huang, L. (2016) Codelivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J. Control. Release. 244, 63-73. https://doi.org/10.1016/j.jconrel.2016.11.005
  23. Yang, X. Y., Li, Y. X., Li, M., Zhang, L., Feng, L. X. and Zhang, N. (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 334, 338-345. https://doi.org/10.1016/j.canlet.2012.07.002
  24. Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y. and Lu, W. (2010) Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J. Control. Release 143, 136-142. https://doi.org/10.1016/j.jconrel.2009.12.020
  25. Zhao, D., Gong, T., Fu, Y., Nie, Y., He, L. L., Liu, J. and Zhang, Z. R. (2008) Lyophilized Cheliensisin A submicron emulsion for intravenous injection: characterization, in vitro and in vivo antitumor effect. Int. J. Pharm. 357, 139-147. https://doi.org/10.1016/j.ijpharm.2008.01.055
  26. Zhao, P., Wang, H., Yu, M., Cao, S., Zhang, F., Chang, J. and Niu, R. (2010) Paclitaxel-loaded, folic-acid-targeted and TAT-peptideconjugated polymeric liposomes: in vitro and in vivo evaluation. Pharm. Res. 27, 1914-1926. https://doi.org/10.1007/s11095-010-0196-5
  27. Zhao, P., Wang, H., Yu, M., Liao, Z., Wang, X., Zhang, F., Ji, W., Wu, B., Han, J., Zhang, H., Wang, H., Chang, J. and Niu, R. (2012) Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 81, 248-256. https://doi.org/10.1016/j.ejpb.2012.03.004

Cited by

  1. Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4 vol.81, pp.9, 2018, https://doi.org/10.1080/15287394.2018.1440186
  2. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs vol.10, pp.3, 2018, https://doi.org/10.3390/pharmaceutics10030074
  3. Current Applications of Nanoemulsions in Cancer Therapeutics vol.9, pp.6, 2019, https://doi.org/10.3390/nano9060821
  4. Nanocomposites as biomolecules delivery agents in nanomedicine vol.17, pp.None, 2017, https://doi.org/10.1186/s12951-019-0479-x
  5. CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide vol.6, pp.1, 2017, https://doi.org/10.1021/acsbiomaterials.9b01724
  6. Quality by Design Applied Development of Immediate-Release Rabeprazole Sodium Dry-Coated Tablet vol.13, pp.2, 2017, https://doi.org/10.3390/pharmaceutics13020259
  7. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review vol.13, pp.12, 2021, https://doi.org/10.3390/pharmaceutics13122120