• Title/Summary/Keyword: PSpice Simulation

Search Result 218, Processing Time 0.027 seconds

A Study on the GaAs MESFET Modeling and the Method of Parameter Extraction (갈륨비소 MESFET의 모델링과 파라미터 추출법에 관한 연구)

  • 정명래;김학선;이형재
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.210-214
    • /
    • 1991
  • We briefly compared GaAs MESFET model and s셔요 on the method of parameter extraction for PSPICE simulation. The parameter determined from above method were substituded into a commercial version of PSPICE which supports the hyperbolic tangentent model. The result of simulation is reasonably good at the lower VGS and is significantly fitted overall by optimization.

Comparison and Analysis of the Soft-Switching ZVT Converters in Efficiency Using PSPICE (PSPICE를 이용한 소프트 스위칭 ZVT컨버터 효율 비교와 분석)

  • Kim Yoon-Ho;Kim Su-Hong;Lee Kang-Hee;Kim Seung-Mo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.364-369
    • /
    • 2002
  • Presently, a high frequency switching technique is used for a converter design to reduce its size and weight. However an increased switching frequency introduces a high switching loss. To the reduce switching loss, soft switching techniques using ZVS and ZCS are applied. It is very important to improve efficiency. However In general to develop new converter circuits, the efficiency and other performance parameters can be determined after design, implementation and experiments. The idea in this paper is to determine and predict efficiency and other operating characteristics without realization and experiments. Thereby a complex design and implementation can be avoided. PSPICE is used as a simulation tool. This is verified by comparing simulation and experiments results of the two different soft switching converters.

  • PDF

Pspice ABM MOSFET Model for Conducted EMI Analysis (전도 전자파 장애 분석을 위한 Pspice ABM MOSFET 모델)

  • Lee, J.H.;Lee, D.Y.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1876-1878
    • /
    • 1998
  • For an analysis and simulation of the conducted EMI of switching converters, an accurate simulation model for MOSFET is needed. This paper presents a new modeling approach, which incorporates DC output characteristics and AC dynamics especially the parasitic capacitances. It uses Pspice ABM(Analog Behavioral Model) and the MOSFET parameters can be obtained from the Data sheet in the frequency range of interest for EMI analysis. The model verified with an experimental setup and the EMI for a test converter is analyzed with respect to the MOSFET switching waveforms.

  • PDF

Switching Characteristics and PSPICE Modeling for MOS Controlled Thyristor (MOS 제어 다이리스터의 특성 해석 및 시뮬레이션을 위한 모델)

  • Lee, Young-Kook;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.237-239
    • /
    • 1994
  • The MOS-controlled thyristor(MCT) is a new power semi-conductor device that combines four layers thyristor structure presenting regenerative action and MOS-gate providing controlled turn-on and turn-off. The MCT has very fast switching speed owing to voltage controlled MOS-gate, and very low on-state voltage drop resulting from regenerative action of four layers thyristor structure. In addition, because of a higher dv/dt rating and di/dt rating, gate drive circuit and snubber circuit can be simpler comparing to other power switching devices. So recently much interest and endeavor is being applied to develop the performance and ratings of the MCT. This paper describes the switching characteristic of the MCT for its practical applications and presents a model for PSPICE circuit simulation. The model for PSPICE circuit simulation is compared to the experimental result using MCTV75P60F1 made by Harris co..

  • PDF

A Pspice Model of MOS-Controlled Thyrister for Circuit Simlulation (회로 시뮬레이션을 위한 MOS 제어 다이리스터의 PSPICE 모델)

  • Lee, Young-Kook;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.382-384
    • /
    • 1995
  • The advancement of power semiconductor devices has given great attribution to the performance and reliability or power conversion systems. But contemporary power devices have room for improvement. So much interest and endeavor are being applied to develop an improved power devices. The MOS-Controlled Thyristor(MCT)is a recently developed power device which combines four layers thyristor structure and MOS-gate. Owing to advantages compared to other devices in many respects, the MCT attracts much notice recently. Nowadays, in designing and manufacturing power conversion systems, the importance of circuit simulation for reducing cost and time is incensed. And to excute the simulation that resemble the real system as much as possible, to develop a model of power device that provides properly static and dynamic characteristics is important. So, this paper presents a PSPICE model of the MCT considering dynamic characteristics.

  • PDF

Modeling and Analysis of LED using PSPICE (PSPICE를 이용한 발광다이오드 모델링 및 분석)

  • Cho, Moon-Taek;Song, ,Ho-Bin;Kim, Young-Chun;Baek, Dong-Hyun;Hwang, Lak-Hoon;Baek, Jong-Mu;Cho, ,Gun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.959_960
    • /
    • 2009
  • Worldwide problem, due to the depletion of energy to power more efficient use of the same capacity to improvise for the use of LED brightness is growing. Recent advances in LED technology have lead to LEDs' widespread use in outdoor-signal applications, such as in traffic and railroad signals. Likewise, for large system design and production of issues leading to the simulation should be performed with less effort than to create a system that is reliable. In this paper a wide field of use to more accurately simulate a LED, and easy to use PSPICE can be used as general-purpose use of the LED device modeling. According to a particular LED, the device easy to use basic input variables to the values of library. In order to determine the behavior of the library to provide basic diode device, compared with PSPICE simulations confirm the accuracy of the simulation was performed.

  • PDF

A Study on the Phase Locked Loop Macromodel for PSPICE (PSPICE에 사용되는 위상동기루프 매크로모델에 관한 연구)

  • 김경월;김학선;홍신남;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1692-1701
    • /
    • 1994
  • Macromodeling technology is useful to simulate and analyze the performance of new elements and complicated circuits or systems without any changes in today's general simulator, PSPICE. In this paper, Phase Locked Loop(PLL) is designed using macromodeling technique. The PLL macromodel has two basic sub-macromodels of the phase detector and the voltage controlled oscillator(VCO). The PLL macromodel has two open terminals for inserting RC low pass filter. The PLL macromodel is simulated using simulation parameters of LM565CN manufactured in the National company. At a free-running frequency, 2500Hz, upper lock range and lower capture range was 437Hz, 563Hz, respectively. Also, experimental results and simulation results of LM565CN PLL show good agreement.

  • PDF

Electronic Circuit Analysis of the Lorentz Chaotic System for Engineering Applications (공학적 응용을 위한 로렌츠 카오스 시스템의 전자회로 해석)

  • Han, Sang-Baek;Jo, Mun-Kyu;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.311-316
    • /
    • 2012
  • In this paper, chaotic circuit of the Lorentz system for engineering applications was implemented using resistor, multipliers, capacitors and operational amplifiers. The implemented Lorentz chaotic system was analysed by PSPICE program. PSPICE simulation results show many kind of chaotic phenomena such time waveforms and phase plots. Meanwhile, according to resistor's variation, we got that Lorentz system show equilibrium state, periodic state and chaotic state.

Pspice Simulation for Nonlinear Components and Surge Suppression Circuits (비선형 소자 및 서지억제회로의 Pspice 시뮬레이션)

  • Lee, Bok-Hui;Gong, Yeong-Eun;Choe, Won-Gyu;Jeon, Deok-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.477-486
    • /
    • 2000
  • This paper presents Pspice modeling methods for spark gaps and ZnO varistors and describes the application for the two-stage surge suppression circuit which was composed of the nonlinear components. The simulation modelings of nonlinear components were conducted on the basis of the voltage and current curves measured by the impulse current with the time-to-crest of $1~50 \mus$ and the impulse voltage with the rate of the time-to-crest of 10, 100 and 1000 V/\mus$. The firing voltages of the spark gap increased with increasing the rate of the time-to-crest of impulse voltage and the measured data were in good agreement with the simulated data. The I-V curves of the ZnO varistor were measured by applying the impulse currents of which time-to-crests range from 1 to $50 \mus$ and peak amplitudes from 10 A to 2 kA. The simulation modeling was based on the I-V curves replotted by taking away the inductive effects of the test circuit and leads. The meximum difference between the measured and calculated data was of the order of 3%. Also the two-stage surge suppression circuit made of the spark gap and the ZnO varistor was investigated with the impulse voltage of $10/1000\mus$$mutextrm{s}$ wave shape. The overall agreement between the theoretical and experimental results seems to be acceptable. As a consequence, it was known that the proposed simulation techniques could effectively be used to design the surge suppression circuits combined with nonlinear components.

  • PDF

A Study on the Characteristics of PCS Using a Solar Cells Generation of Optimal Integrated (최적 일체형 태양광 발전용 전력변환장치 PCS 특성에 관한 연구)

  • Hwang, Lark Hoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1003-1014
    • /
    • 2019
  • In this paper, we modeled the devices used easily in PV system circuits. Simulation tools use PSPICE to enable intuitive electrical circuit simulations. Simulations were also performed on the effects of temperature and spatial radiation that are easy to overlook when using solar cells using modelled libraries. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT(Maximum Power Point Tracking) control system was modeled and simulated to confirm good operation. In order to verify the operation of the simulation, we constructed an actual system with the same conditions in the simulation and experimented. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.