• Title/Summary/Keyword: PSNR(Peak Signal-to-Noise Ratio)

Search Result 336, Processing Time 0.027 seconds

Noise Removal using Canny Edge Detection in AWGN Environments (AWGN 환경에서 캐니 에지 검출을 이용한 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1540-1546
    • /
    • 2017
  • Digital image processing is widely used in various fields including the military, medical, image recognition system, robot and commercial sectors. But in the process of acquiring and transmitting digital images, noise is generated by various external causes. There are various types of general noise depending on the cause and form, but AWGN and impulse noise is one of the leading methods. Removing noise during image processing is essential to the pre-treatment process such as segmentation, image recognition and characteristic extraction. As such, this paper suggests an algorithm that distinguishes the non-edge area and edge area using the Canny edge to apply different filters to different areas in order to effectively remove noise from the image. To verify the effectiveness of the suggested algorithm, it was compared against existing methods using zoom images, edge images and PSNR(peak signal to noise ratio).

Quality Improvement Scheme of Interpolated Image using the Characteristics of the Adjacent Pixels (인접 픽셀들의 특성을 이용한 보간 영상의 화질 개선 기법)

  • Jung, Soo-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.95-102
    • /
    • 2011
  • Interpolation schemes are used widely in image magnification. Magnified image generated by interpolation scheme is composed of the known pixels in input image and the interpolated pixels estimated from the known pixels in input image. So, as the interpolated pixels are estimated to have locality which exists in real images, the magnified image is much closer to the real image. In this paper, an efficient interpolation scheme was proposed to provide locality for the interpolated pixels by using the characteristics of adjacent pixels in input image. The quality of magnified image using the proposed scheme was improved. In experiment, PSNR(Peak Signal to Noise Ratio) was used to evaluate the performance of the proposed scheme. The PSNR's of the magnified images generated by the proposed scheme were greater than those of the magnified images generated by the previous interpolation methods.

Median Modified Wiener Filter for Noise Reduction in Computed Tomographic Image using Simulated Male Adult Human Phantom (시뮬레이션된 성인 남성 인체모형 팬텀을 이용한 전산화단층촬영 에서의 노이즈 제거를 위한 Median Modified Wiener 필터)

  • Ju, Sunguk;An, Byungheon;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Computed tomography (CT) has the problem of having more radiation exposure compared to other radiographic apparatus. There is a low-dose imaging technique for reducing exposure, but it has a disadvantage of increasing noise in the image. To compensate for this, various noise reduction algorithms have been developed that improve image quality while reducing the exposure dose of patients, of which the median modified Wiener filter (MMWF) algorithm that can be effectively applied to CT devices with excellent time resolution has been presented. The purpose of this study is to optimize the mask size of MMWF algorithm and to see the excellence of noise reduction of MMWF algorithm for existing algorithms. After applying the MMWF algorithm with each mask sizes set from the MASH phantom abdominal images acquired using the MATLAB program, which includes Gaussian noise added, and compared the values of root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC), and universal image quality index (UQI). The results showed that RMSE value was the lowest and PSNR, CC and UQI values were the highest in the 5 x 5 mask size. In addition, comparing Gaussian filter, median filter, Wiener filter, and MMWF with RMSE, PSNR, CC, and UQI by applying the optimized mask size. As a result, the most improved RMSE, PSNR, CC, and UQI values were showed in MMWF algorithms.

The Modified Nonlinear Filter to Remove Impulse Noise (임펄스 잡음제거를 위한 변형된 비선형 필터)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.973-979
    • /
    • 2011
  • In the transmitting process of image signal processing system, there are several different causes of degradation that have been occurring. The main cause of degradation is attributed to the noise. The most representive method of removing noise of image, which is caused by impulse noise environment, is using the SM(standard median filter). At edge, the filter has a special feature which has a tendency to decrease. As a result, we proposed a nonlinear filter that restores the image considering edge quality in the impulse noise environment. And through the simulation, we compared with the many of the conventional algorithms and the value of the PSNR(peak signal to nise ratio) is better than them and preserve the edge very well. So the nonlinear filter that proposed in this paper is excepted to help improve restoring the images that in impulse noise environment.

Development of Audio Watermark Decoding Model Using Support Vector Machine (Support Vector Machine을 이용한 오디오 워터마크 디코딩 모델 개발)

  • Seo, Yejin;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.400-406
    • /
    • 2014
  • This paper describes a robust watermark decoding model using a SVM(Support Vector Machine). First, the embedding process is performed inversely for a watermarked signal. And then the watermark is extracted using the proposed model. For SVM training of the proposed model, data are generated that are watermarks extracted from sounds containing watermarks by four different embedding schemes. BER(Bit Error Rate) values of the data are utilized to determine a threshold value employed to create training set. To evaluate the robustness, 14 attacks selected in StirMark, SMDI and STEP2000 benchmarking are applied. Consequently, the proposed model outperformed previous method in PSNR(Peak Signal to Noise Ratio) and BER. It is noticeable that the proposed method achieves BER 1% below in the case of PSNR greater than 10 dB.

An Enhancement Method of Document Restoration Capability using Encryption and DnCNN (암호화와 DnCNN을 활용한 문서 복원능력 향상에 관한 연구)

  • Jang, Hyun-Hee;Ha, Sung-Jae;Cho, Gi-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • This paper presents an enhancement method of document restoration capability which is robust for security, loss, and contamination, It is based on two methods, that is, encryption and DnCNN(DeNoise Convolution Neural Network). In order to implement this encryption method, a mathematical model is applied as a spatial frequency transfer function used in optics of 2D image information. Then a method is proposed with optical interference patterns as encryption using spatial frequency transfer functions and using mathematical variables of spatial frequency transfer functions as ciphers. In addition, by applying the DnCNN method which is bsed on deep learning technique, the restoration capability is enhanced by removing noise. With an experimental evaluation, with 65% information loss, by applying Pre-Training DnCNN Deep Learning, the peak signal-to-noise ratio (PSNR) shows 11% or more superior in compared to that of the spatial frequency transfer function only. In addition, it is confirmed that the characteristic of CC(Correlation Coefficient) is enhanced by 16% or more.

Multi-Mode BTC Image Compression Algorithm for LCD Overdriving (LCD 오버드라이브를 위한 다중 모드 BTC 영상 압축 알고리즘)

  • Cho, Moonki;Yoon, Yungsup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.67-74
    • /
    • 2015
  • BTC (Block Truncation Coding) image compression is simple to implement by hardware and has excellent edge retention capability of image, image compression techniques are widely used in LCD overdrive. In this paper, to maintain high visual quality and has high compression rate, Multi-Mode BTC (MM-BTC) algorithm is proposed. The MM-BTC has high compression rate using advanced Y-based BTC method and has high visual quality using improved 2-level and 4-level BTC method in this paper. As shown in simulation results, MM-BTC improves still image PSNR (Peak Signal to Noise Ratio) up to 2.34 dB as compared with other algorithms. When the MM-BTC is applied to LCD overdrive, MM-BTC improves moving picture PSNR up to 2.33 dB as compared with other algorithms in literature.

Steganography Software Analysis -Focusing on Performance Comparison (스테가노그래피 소프트웨어 분석 연구 - 성능 비교 중심으로)

  • Lee, Hyo-joo;Park, Yongsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1359-1368
    • /
    • 2021
  • Steganography is a science of embedding secret data into innocent data and its goal is to conceal the existence of a carrier data. Many research on Steganography has been proposed by various hiding and detection techniques that are based on different algorithms. On the other hand, very few studies have been conducted to analyze the performance of each Steganography software. This paper describes five different Steganography software, each having its own algorithms, and analyzes the difference of each inherent feature. Image quality metrics of Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) are used to define its performance of each Steganography software. We extracted PSNR and SSIM results of a quantitative amount of embedded output images for those five Steganography software. The results will show the optimal steganography software based on the evaluation metrics and ultimately contribute to forensics.

Salt and Pepper Noise Removal using Cubic Spline Interpolation (3차 스플라인 보간법을 이용한 Salt and Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1955-1960
    • /
    • 2016
  • Currently, with the rapid development in digital era, the image equipment related to multi-media is becoming commercialized. However, in the process of transmitting image data, deterioration occurs due to various causes, and the most representative deterioration is salt and pepper noise. There are many methods of eliminating salt and pepper noise such as SWMF, RSIF, MNRF, which are rather insufficient in eliminating noise in high-density slat and pepper noise environment. Therefore, in order to eliminate salt and pepper noise, this thesis proposes an algorithm by first judging the noise, and when the center pixel value is non-noise, the original pixel is preserved, and when it is noise, the partial mask is subdivided into 4 directions to apply cubic spline interpolation to the direction with most non-noise pixels. Also, for the objective judgement, it was compared to existing methods, and the PSNR(peak signal to nise ratio) was set as the judgement standard.

Disparity Estimation for Intermediate View Reconstruction of Multi-view Video (다시점 동영상의 중간시점영상 생성을 위한 변이 예측 기법)

  • Choi, Mi-Nam;Yun, Jung-Hwan;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.915-929
    • /
    • 2008
  • In this paper, we propose an algorithm for pixel-based disparity estimation with reliability in the multi-view image. The proposed method estimates an initial disparity map using edge information of an image, and the initial disparity map is used for reducing the search range to estimate the disparity efficiently. Furthermore, disparity-mismatch on object boundaries and textureless-regions get reduced by adaptive block size. We generated intermediate-view images to evaluate the estimated disparity. Test results show that the proposed algorithm obtained $0.1{\sim}1.2dB$ enhanced PSNR(peak signal to noise ratio) compared to conventional block-based and pixel-based disparity estimation methods.