DOI QR코드

DOI QR Code

Steganography Software Analysis -Focusing on Performance Comparison

스테가노그래피 소프트웨어 분석 연구 - 성능 비교 중심으로

  • Lee, Hyo-joo (Graduate School of Information Security, Sejong Cyber University) ;
  • Park, Yongsuk (Graduate School of Information Security, Sejong Cyber University)
  • Received : 2021.08.19
  • Accepted : 2021.08.27
  • Published : 2021.10.31

Abstract

Steganography is a science of embedding secret data into innocent data and its goal is to conceal the existence of a carrier data. Many research on Steganography has been proposed by various hiding and detection techniques that are based on different algorithms. On the other hand, very few studies have been conducted to analyze the performance of each Steganography software. This paper describes five different Steganography software, each having its own algorithms, and analyzes the difference of each inherent feature. Image quality metrics of Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) are used to define its performance of each Steganography software. We extracted PSNR and SSIM results of a quantitative amount of embedded output images for those five Steganography software. The results will show the optimal steganography software based on the evaluation metrics and ultimately contribute to forensics.

스테가노그래피는 데이터 안에 데이터를 은폐하는 기술로, 전달 매체의 존재가 발각되지 않도록 하는 것이 주요목적이다. 현재 스테가노그래피 관련 연구는 알고리즘을 기반으로 정립된 은닉 기법, 검출 기법들에 관련해서 다양하게 연구되고 있지만, 소프트웨어 성능을 분석하기 위한 실험 중심의 연구는 상대적으로 부족하다. 본 논문은 서로 다른 알고리즘으로 데이터를 은폐하는 다섯 개의 스테가노그래피 소프트웨어의 특징을 파악하고, 평가하는 데 목적을 두었다. 스테가노그래피 소프트웨어의 성능 조사를 위하여 시각 평가 척도로 사용되는 PSNR(Peak Signal to Noise Ratio), SSIM(Structural SIMilarity)을 이용하였다. 스테가노그래피 소프트웨어를 통하여 임베딩한 스테고 이 미지들의 PSNR, SSIM을 도출하여 정량적 성능 비교 분석한다. 평가 척도에 따라 우수한 스테가노그래피 소프트웨어를 소개하여 포렌식에 기여 하고자 한다.

Keywords

References

  1. K. Choudhary, "Image Steganography and Global Terrorism," International Journal of Scientific and Engineering Research, vol. 3, no. 7, 2012.
  2. Seok-ki Lee's RO, Secret communication using 'steganography' [Internet]. Available: https://news.chosun.com/site/data/html_dir/2013/09/11/2013091100144.html.
  3. BBC. Winter Olympics targeted by hackers says security firm [Internet]. Available: https://www.bbc.com/news/business-42600250.
  4. H. Mathkour, B. Al-Sadoon, and A. Touir, "A New Image Steganography Technique," 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008.
  5. J. H. He, W. Lan, and S. Tang, "A secure image sharing scheme with high quality stego-images based on steganography," Multimedia Tools & Applications, vol. 76, no. 6, pp. 7677-7698, Mar. 2017. https://doi.org/10.1007/s11042-016-3429-8
  6. B. Dunbar, "A Detailed Look at Steganographic Techniques and Their Use in an Open-systems Environment," SANS Institute, 2002.
  7. N. Subramanian, S. Al-maadeed, and A. Bouridane, "Image Steganography: A Review of the Recent Advances," IEEE, vol. 9, pp. 23409-23423, 2021.
  8. A. Majumder and S. Changder, "A Generalized Model of Text Steganography by Summary Generation using Frequency Analysis," IEEE, 7the International Conference on Reliabillity, Infocom Technologies and Optimization, pp. 599-605, 2018.
  9. A. A. AlSabnany, A. H. Ali, F. Ridzuan, A. H. Azni, and M. R. Mokhtar, "Digital Audio Steganography: Systematic Review, Classification, and Analysis of the Current State of the Art," In Computer Science Review, vol. 38, Nov. 2020.
  10. P. Hayati, V. Potdar, and E. Chang, "A Survey of Steganographic and Steganalytic Tools for the Digital Forensic Investigator," Workshop of Information Hiding and Digital Watermarking, 2007.
  11. A. Zeki, A. Ibrahim, and A. Manaf, "Steganographic Software: Analysis and Implementation," International Journal of Computers and Communications, vol. 6, no. 1, pp. 35-42, 2012.
  12. H. S. Ju and S. J. Kim, "Development Status of Encryption Products," The Korea Institute of Information Security and Cryptology, vol. 12, no. 5, pp. 50-61, 2002.
  13. Y. G. Go, K. R. Lee, and K. B. Yim, "Effective Detection and Extraction Methods of Hidden Data from Stego Image: Based on PNG File on StegoMagic," Spring Conference of KISM & SEBS, pp. 176-179, 2019.
  14. S. M. Kunjir, S. D. Patil, S. Jabeen, and S. V. Bhosale, "Review on Steganography Tools," International Research Journal of Engineering and Technology, vol. 3, no. 10, pp. 1223-1225, 2016.
  15. I. Karadogan and R. Das, "An Examination on Information Hiding Tools for Steganography," International Journal of Information Security Science, vol. 3, no. 3, pp. 200-208, 2014.
  16. U. Sara, M. Akter, and M. S. Uddin, "Image Quality Assessment through FSIM, SSIM, MSE and PSNR-A Comparative Study," Journal of Computer and Communication, vol. 7, no. 3, pp. 8-18, 2019. https://doi.org/10.4236/jcc.2019.73002
  17. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image Quality Assessment: From Error Visibility to Structural Similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004. https://doi.org/10.1109/TIP.2003.819861
  18. D. Setiadi, "PSNR vs SSIM: imperceptibility quality assessment for image steganography," Multimedia Tools and Applications 80, pp. 8423-8444, Nov. 2020. https://doi.org/10.1007/s11042-020-10035-z
  19. National Instruments Corporation. Peak Signal-to-Noise Ratio as an Image Quality Metric [Internet]. Available: https://www.ni.com/ko-kr/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html.
  20. B. Kapila and T. Thind, "Review and Analysis of Data Security Using Image Steganography," IEEE, 2nd International Conference on Computation, Automation and Knowledge Management, Amity University, pp. 227-231, Jan. 2021.
  21. N. Koren. "The Imatest program: Comparing cameras with different amount of sharpening," In Digital Photography II, International Society for Optics and Photonics: San Francisco, CA, USA, vol. 6069, no. 60690L, 2006.