• Title/Summary/Keyword: PPAR

Search Result 624, Processing Time 0.029 seconds

Anti-Obesity Effect of Ethyl Acetate Extracts from Agrimonia pilosa Ledeb. in 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에서 용아초 에틸아세테이트 추출물의 항비만 효과)

  • Lee, Jung-A;Ahn, Eun-Kyung;Hong, Seong-Su;Oh, Joa-Sub
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.2
    • /
    • pp.161-167
    • /
    • 2012
  • To evaluate the anti-obesity effect of Agrimonia pilosa L., this study investigated that ethyl acetate extract from A. pilosa L. (EAAP) suppresses lipid accumulation and inhibits expression of adipogenic marker genes, such as peroxisome proliferator activated receptor ${\gamma}$ (PPAR${\gamma}$), CCAAT-enhancer-binding protein ${\alpha}$ (C/EBP${\alpha}$), glucose transporter 4 (GLUT4), and adiponectin in 3T3-L1 preadipocytes. We demonstrated that EAAP inhibited adipocyte differentiation and expression of PPAR${\gamma}$ and C/EBP${\alpha}$ mRNA levels in a dose-dependent manner. In addition, EAAP reduced the PPAR${\gamma}$ transcriptional activity stimulated by rosiglitazone in HEK 293T cells and decreased the expression of GLUT4 and adiponectin in 3T3-L1 cells. These results suggest that EAAP inhibits preadipocyte differentiation and adipogenesis by blocking of PPAR${\gamma}$ and C/EBP${\alpha}$ gene expression in 3T3-L1 cells.

Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes (미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향)

  • Kim, Hye-Jin;Kang, Chang-Han;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1052-1056
    • /
    • 2012
  • Undaria pinnatifada has been used as a natural diet food with few calories and as a source of iodine. Even though U. pinnatifida has been regarded as a diet food, the mechanisms of its inhibitory effects on adipocyte differentiation and the accumulation of fat in adipocytes are poorly understood. In this study, the effect and mechanism of U. pinnatifida ethanol extract on 3T3-L1 differentiation into adipocytes were investigated. The effects of U. pinnatifida ethanol extract on cell viability and the anti-adipogenic effect were investigated via MTT assay, Oil red O staining, RT-PCR, and western blot. The U. pinnatifida ethanol extract did not show toxicity up to a concentration of 50 ${\mu}g/ml$. The addition of U. pinnatifida ethanol extract decreased triglyceride contents by 40% when 50 ${\mu}g/ml$ of U. pinnatifida ethanol extract was added during 3T3-L1 differentiation and adipocyte triglyceride formation. The transcription and expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin, and hormone-sensitive lipase (HSL) as adipocyte-specific proteins were determined by RT-PCR and western blot. The overexpression of $PPAR{\gamma}$ could accelerate adipocyte differentiation. Also, leptin was secreted for triglyceride accumulation in the adipocytes and the increase of adipocyte cell size. Thus, $PPAR{\gamma}$ and leptin were used as indicators of obesity. $PPAR{\gamma}$ and leptin were repressed by the increased addition of U. pinnatifida ethanol extract. This indicates that U. pinnatifida was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceride formation in adipocytes.

Triglyceride Control Effect of Agrimonia eupatoria L. in Oleic Acid Induced NAFLD-HepG2 Model (올레산 유도 비알콜성 지방간세포에서 용아초의 중성지방 조절효과)

  • Sohn, Eun-Hwa;Kim, Taeseong;Jeong, Yong Joon;Han, Hyo-Sang;Lea, Youngsung;Cho, Young Mi;Kang, Se Chan
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.635-640
    • /
    • 2015
  • Nonalcoholic fatty liver disease (NAFLD) is a kind of liver inflammation caused by an accumulation of fat in the liver. Patients with NAFLD have an increased risk to develop liver fibrosis, which leads to cirrhosis. To investigate hepatoprotective effects of Agrimonia eupatoria L (A. eupatoria), oleic acid-induced NAFLD in HepG2 cells was used and A. eupatoria was fractionated with ethanol (EtOH), n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH), and H2O. Cells treated with the EtOAc fraction showed the highest lipid accumulation inhibiting effect. A. eupatoria also suppressed triglyceride accumulation and inhibited expression of lipid marker gene, such as a peroxisome proliferator activated receptor γ (PPAR-γ). Moreover, another marker, mRNA expression level of peroxisome proliferator activated receptor α (PPAR-α) was significantly increased by in a dose-dependent manner. These results suggest that A. eupatoria is a potent agent for the treatment of NAFLD.

Polysaccharides from Edible Mushroom Hinmogi (Tremella fuciformis) Inhibit Differentiation of 3T3-L1 Adipocytes by Reducing mRNA Expression of $PPAR{\gamma}$, C/$EBP{\alpha}$, and Leptin

  • Jeong, Hye-Jin;Yoon, Seon-Joo;Pyun, Yu-Ryang
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.267-273
    • /
    • 2008
  • Water-soluble fraction (WSF) from edible mushroom hinmogi (Tremella fuciformis) were obtained by water extraction, and polysaccharides in the WSF were separated by ethanol precipitation. The inhibitory effects of the polysaccharides on 3T3-L1 adipocyte differentiation were evaluated by the reduction of peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$) translation, triglyceride accumulation, Oil Red-O staining, and expression levels of $PPAR{\gamma}$, CCAAT/enhancer binding protein a (C/$EBP{\alpha}$), and leptin. The $PPAR{\gamma}$ translation in 3T3-L1 cells was inhibited by the treatment with polysaccharide precipitated by 80% ethanol (P80) which showed highest inhibitory activity among polysaccharides tested. In addition, treatment of P80 to 3T3-L1 cells significantly inhibited the triglyceride accumulation, Oil Red-O staining, and mRNA expression of $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin in a dose-dependent manner. Based upon these results, P80 from edible mushroom hinmogi shows the inhibitory activity on the differentiation of 3T3-L1 adipocytes. Therefore, it might be employed as a potential anti-obesity material.

Troglitazone Lowers Serum Triglycerides with Sexual Dimorphism in C57BL/6J Mice

  • Jeong Sun-Hyo;Yoon Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Thiazolidinediones (TZDs) are widely used antidiabetic drugs that activate the nuclear peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$, and thereby improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin resistance, and cardiovascular disease. To determine whether the $PPAR{\gamma}$ ligand troglitazone regulates lipid metabolism with sexual dimorphism, we examined the effects of troglitazone on circulating lipids, body weight and the expression of hepatic genes responsible for lipid metabolism in both sexes of C57BL/6J mice. Compared to mice fed a low fat control diet, both sexes of mice fed a troglitazone-treated low fat diet for 14 weeks did not exhibit changes in body weight gain, serum total cholesterol, HDL-cholesterol and LDL-cholesterol levels. However, serum triglycerides were significantly reduced in both sexes of mice, although these effects were more pronounced among males. Furthermore, troglitazone regulated the expression of hepatic genes critical for lipid and lipoprotein metabolism, the magnitudes of which were much higher in males compared to females, as evidenced by results for increased acyl-CoA oxidase and decreased apolipoprotein C-III mRMA levels. These results suggest that $PPAR{\gamma}$ activator troglitazone may exert sexually dimorphic control of serum triglycerides in part through the differential activation of $PPAR{\gamma}$ in liver between male and female mice.

  • PDF

The Korean Traditional Anti-obesity drug Gyeongshingangjeehwan Stimulates $AMPK{\alpha}$ Activation in Skeletal Muscle of OLETF Rats

  • Shin, Soon-Shik;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.273-281
    • /
    • 2011
  • Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) inhibits obesity and insulin resistance in obese type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. We investigated whether GGEx may affect AMP-activated protein kinase ${\alpha}$ ($AMPK{\alpha}$) since $AMPK{\alpha}$ activation is known to stimulate fatty acid oxidation in skeletal muscle of obese rodents. After OLETF rats were treated with GGEx, we studied the effects of GGEx on $AMPK{\alpha}$ and acetyl-CoA carboxylase (ACC) phosphorylation, and the expression of $AMPK{\alpha}$, $PPAR{\alpha}$, and $PPAR{\alpha}$ target genes. The effects of GGEx on mRNA expression of the above genes were also measured in C2C12 skeletal muscle cells. Administration of GGEx to OLETF rats for 8 weeks increased phosphorylation of $AMPK{\alpha}$ and ACC in skeletal muscle. GGEx also elevated skeletal muscle mRNA levels of $AMPK{\alpha}1$ and $AMPK{\alpha}2$ as well as $PPAR{\alpha}$ and its target genes. Consistent with the in vivo data, similar activation of genes was observed in GGEx-treated C2C12 cells. These results suggest that GGEx stimulates skeletal muscle $AMPK{\alpha}$ and $PPAR{\alpha}$ activation, leading to alleviation of obesity and related disorders.

The Korean Traditional Medicine Gyeongshingangjeehwan Reduces Lipid Accumulation in Skeletal Muscle and C2C12 Cells

  • Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2011
  • Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) activates AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) critical for fatty acid oxidation in skeletal muscle and C2C12 skeletal muscle cells. Thus, we examined whether GGEx can reduce lipid accumulation in these cells and tissues. After obese and type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats were treated with GGEx, we studied the effects of GGEx on skeletal muscle lipid accumulation. The effects of GGEx and/or the AMPK inhibitor compound C on lipid accumulation and expression of AMPK and $PPAR{\alpha}$ were measured in C2C12 skeletal muscle cells. Compared with lean Long-Evans Tokushima Otsuka rats, obese OLETF rats had increased triglyceride droplets. However, administration of GGEx to OLETF rats for 8 weeks significantly decreased triglyceride droplets in skeletal muscle. Consistent with the $in$ $vivo$ data, GGEx inhibited lipid accumulation, the degree of which was comparable to Wy14,643, the potent activator of $PPAR{\alpha}$. GGEx also increased skeletal muscle mRNA levels of AMPK${\alpha}1$, AMPK${\alpha}2$, and $PPAR{\alpha}$. However, compound C inhibited these effects in C2C12 cells. These results suggest that GGEx suppresses skeletal muscle lipid accumulation and this process may be mediated by AMPK and $PPAR{\alpha}$ activation.

Revisiting PPARγ as a target for the treatment of metabolic disorders

  • Choi, Sun-Sil;Park, Jiyoung;Choi, Jang Hyun
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.599-608
    • /
    • 2014
  • As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, $PPAR{\gamma}$ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that $PPAR{\gamma}$ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of $PPAR{\gamma}$ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of $PPAR{\gamma}$.

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

Ponciri Fructus Extract Induces Lipogenesis through Transcription Factor SREBP-1 Activation (지실 추출물의 전사인자 SREBP-1 활성에 의한 지질 생성 촉진)

  • Kim, Dae-Sung;Jeon, Byoung-Kook;Mun, Yeun-Ja;Lee, Ghang-Tai;Lee, Kun-Kuk;Woo, Won-Hong
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.268-273
    • /
    • 2012
  • This study was to explore the lipogenic effect by ethanol extract of ponciri fructus (EPF) and possible molecular mechanisms in sebocyte. When SZ95 sebocyte cell line were treated with the EPF, lipid droplets were accumulated in the majority of cells. EPF increased expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) in the SZ95 cells. EPF augmented expression of PPAR-${\beta}$ and PPAR-${\gamma}$ but not that of PPAR-${\alpha}$. These results suggest that EPF induces lipogenesis in SZ95 cells through SREBP-1, PPAR-${\beta}$ and PPAR-${\gamma}$ activations.