DOI QR코드

DOI QR Code

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo (AmorePacific Corporation Research and Development Center) ;
  • Lee, Soo-Hwan (Department of Physiology, Ajou University School of Medicine)
  • Published : 2010.01.31

Abstract

Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

Keywords

References

  1. Arikawa, T., Omura, K. and Morita, I. (2004). Regulation of bone morphogenetic protein-2 expression by endogenous prostaglandin E2 in human mesenchymal stem cells. J. Cell Physiol. 200, 400-406. https://doi.org/10.1002/jcp.20031
  2. Borglum, J. D., Pedersen, S. B., Ailhaud, G., Negrel, R. and Richelsen, B. (1999). Differential expression of prostaglandin receptor mRNAs during adipose cell differentiation. Prostaglandins and other Lipid Mediat. 57, 305-317. https://doi.org/10.1016/S0090-6980(98)00082-3
  3. Braithwaite, S. S. and Jarabak, J. (1975). Studies on a 15-hydroxyprostaglandin dehydrogenase from human placenta. J. Biol. Chem. 250, 2315-2318.
  4. Chou, W. L., Chuang, L. M., Chou, C. C., Wang, A. H., Lawson, J. A., FitzGerald, G. A. and Chang, Z. F. (2007). Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J. Biol. Chem. 282, 18162-18172. https://doi.org/10.1074/jbc.M702289200
  5. Entenmann, G. and Hauer, H. (1996). Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am. J. Physiol. 270, C1011-C1016. https://doi.org/10.1152/ajpcell.1996.270.4.C1011
  6. Gregoire, F. M., Smas, C. M. and Sul, H. S. (1998). Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  7. Hazra, S., Batra, R. K., Tai, H. H., Sharma, S., Cui, X. and Dubinett, S. M. (2007). Pioglitazone and rosiglitazone decreases prostaglandin $E_2$ in non-small-cell lung cancer cells by up-regulating 15-hydroxysprostaglandin dehydrogenase. Mol. Pharmacol. 71, 1715-1720. https://doi.org/10.1124/mol.106.033357
  8. He, G., Sung, Y. M. and Fischer, S. M. (1996). Troglitazone induction of COX-2 expression is dependent on ERK activation in keratinocytes. Prostaglandins Leukotrienes Essent. Fatty Acids 74, 193-197.
  9. Inoue, H., Tanabe, T. and Umesono, K. (2000). Feedback control of cyclooxygenase-2 expression through PPARgamma. J. Biol. Chem. 275, 28028-28032.
  10. Janderova, L., McNeil, M., Murrell, A. N., Mynatt, R. L. and Smith, S. R. (2003). Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obesity Res. 11, 65-74. https://doi.org/10.1038/oby.2003.11
  11. Murakami, M., Nakashima, K., Kamei, D., Masuda, S., Ishikawa, Y., Ishii, T., Ohmiya, Y., Watanabe, K. and Kudo, I. (2003). Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J. Biol. Chem. 278, 37937-37947. https://doi.org/10.1074/jbc.M305108200
  12. Murakami, M., Naraba, H., Tanioka, T., Semmyo, N., Nakatani, Y., Kojima, F., Ikeda, T., Fueki, M., Ueno, A., Ohishi, S. and Kudo, I. (2000). Regulation of Prostaglandin E2 Biosynthesis by Inducible Membrane-associated Prostaglandin E2 Synthase That Acts in Concert with Cyclooxygenase-2. J. Biol. Chem. 275, 32783-32792. https://doi.org/10.1074/jbc.M003505200
  13. Pfaffl. M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. https://doi.org/10.1093/nar/29.9.e45
  14. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. and Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
  15. Reginato, M. J., Krakow, S. L., Bailey, S. T. and Lazar, M. A. (1998). Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 273, 1855-1858. https://doi.org/10.1074/jbc.273.4.1855
  16. Rosen, E. D. (2005). The transcriptional basis of adipocyte development. Prostaglandins Leukotrienes Essent. Fatty Acids 73, 31-34. https://doi.org/10.1016/j.plefa.2005.04.004
  17. Sakaguchi, Y., Sekiya, I., Yagishita, K. and Takeshi, M. (2005). Comparison of human stem cells derived from various mesenchymal tissues. Arthritis Rheum. 52, 2521-2529. https://doi.org/10.1002/art.21212
  18. Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009a). (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPARgamma transactivation. Biochem. Pharmacol. 77, 125-133. https://doi.org/10.1016/j.bcp.2008.09.033
  19. Shin, J. H., Shin, D. W. and Noh, M. (2009b). IL-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem. Pharmacol. 77, 1835-1844. https://doi.org/10.1016/j.bcp.2009.03.008
  20. Tanikawa, N., Ohmiya, Y., Ohkubo, H., Hashimoto, K., Kangawa, K., Kojima, M., Ito, S. and Watanabe, K. (2002). Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem. Biophys. Res. Comm. 291, 884-889. https://doi.org/10.1006/bbrc.2002.6531
  21. Tsuboi, H., Sugimoto, Y., Kainoh, T. and Ichikawa, A. (2004). Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation. Biochem. Biophys. Res. Comm. 322, 1066-1072. https://doi.org/10.1016/j.bbrc.2004.08.018
  22. Xie, Y., Kang, X., Ackerman, W. E., Belury, M. A., Koster, C., Rovin, B. H., Landon, M. B. and Kniss, D. A. (2006). Differentiation-dependent regulation of the cyclooxygenase cascade during adipogenesis suggests a complex role for prostaglandins. Diabetes Obesity Metab. 8, 83-93. https://doi.org/10.1111/j.1463-1326.2005.00472.x
  23. Yan, H., Kermouni, A., Abdel-Hafez, M. and Lau, D. C. W. (2003). Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells. J. Lipid Res. 44, 424-429. https://doi.org/10.1194/jlr.M200357-JLR200
  24. Yang, W. L. and Frucht, H. (2001). Activation of the PPAR$\gamma$ pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis 22, 1379-1383. https://doi.org/10.1093/carcin/22.9.1379

Cited by

  1. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells vol.83, pp.5, 2012, https://doi.org/10.1016/j.bcp.2011.12.010
  2. Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels vol.45, pp.3, 2013, https://doi.org/10.1016/j.biocel.2012.12.001
  3. p38-Targeted inhibition of interleukin-12 expression by ethanol extract fromCordyceps bassianain lipopolysaccharide-activated macrophages vol.33, pp.1, 2011, https://doi.org/10.3109/08923973.2010.482137