• Title/Summary/Keyword: POSS

Search Result 60, Processing Time 0.029 seconds

Preparation of Silicon-Based Hybrid Gels with POSS Additives and Their Application to LED Encapsulants (POSS계 첨가제를 가지는 실리콘 젤의 제조와 LED 봉지재 응용)

  • Eun, Hee-Chun;Im, Hee-Eun;Lee, Yun Sang;Kwark, Young-Je
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.311-316
    • /
    • 2015
  • Densely structured polyhedral oligomeric silsesquioxane (POSS) was employed as an additive to enhance hardness of silicon-based hybrid gels for LED encapsulants. To improve the miscibility of POSS and polysiloxane resin, alkyl or oligosiloxane branches were introduced to POSS moiety. Platinum-catalyzed hydrosilylation reactions were used to attach branches of 1-decanol, 9-decen-1-ol, and vinyl-terminated oligosiloxane to the POSS molecules. Alkyl-branched POSSs (decyl-POSS and decenyl-POSS) were immiscibile with polysiloxane resin and generated gels with low transparency and low hardness values. On the other hand, oligosiloxane-branched POSS (Siloxy-POSS) showed good miscibility with polysiloxane resin to give gels with high transparency. However, the prepared gels did not show noticeable improvement in hardness compared to the gels without the POSS additive.

Synthesis and Characterization of Hybrid Nanocomposites of Pd Nanoparticles Containing POSS(Pd-POSS) and Poly(acrylic acid) via Ionic Interactions (실세스키옥세인을 포함한 팔라듐 나노입자와 폴리아크릴산과의 이온결합에 의한 나노복합체 제조 및 특성평가)

  • Jeon, Jong-Hwan;Lim, Jung-Hyurk;Chujo, Yoshiki;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.615-619
    • /
    • 2009
  • Pd-POSS nanoparticles were produced from the reaction of palladium (II) acetate and octa(3-aminopropyl)octasilsesquioxane octahydrochloride (POSS-${NH_3}^+$) in methanol at room temperature. Pd-POSS nanoparticles with a mean diameter of 60-80 nm were the highly ordered spherical aggregates. In contrast, Pd nanoparticles with a size of 4.0 nm were obtained when POSS-${NH_3}^+$ was not introduced. Pd-POSS/PAA nanocomposites of Pd-POSS nanoparticles and poly(acrylic acid) (PAA) were fabricated by utilizing ionic interactions between positively charged Pd-POSS nanoparticles and negatively charged carboxylate groups of PAA. PAA was used as a cross-linker for the preparation of hybrid nanocomposites with the controlled organized structures of Pd-POSS nanoparticles. That is, the self-organization of Pd-POSS nanoparticles was formed into the shape of continuous lines by using PAA as a cross-linker. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA nanocomposites were studied by FE-SEM, AFM, TEM, FT-IR, and TGA.

A Study on Physical Properties of EPDM/Polyhedral Oligomeric Silsesquioxane (POSS) Composites (EPDM/POSS(Polyhedral oligomeric silsesquioxane) 복합재료의 물성 연구)

  • Park, Hyun-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.472-477
    • /
    • 2021
  • The crosslinking behavior of polyhedral oligomeric silsesquioxane (POSS) containing eight acrylate groups in a cage form in ethylene-propylene-diene rubber (EPDM) peroxide crosslinking, the effect on mechanical properties, and the thermal stability were investigated. An EPDM/POSS composite material was prepared by mixing 0 to 12 parts per hundreds of rubber (phr) of POSS per 100 phr of rubber by content and adding a peroxide crosslinking agent. As a result of crosslinking properties, it was found that the acrylate group of POSS was activated by peroxide and improved the peroxide crosslinking efficiency. Although the dispersion stability of POSS in EPDM/POSS composites was poor, the fracture strength, elongation and thermal stability were improved.

Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite (POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성)

  • Han, Jae Hee;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and $^1H$ NMR. The composites, PA-TPE/POSS-(TDI+CL), which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.

Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates (ITO/Glass 기판위에 PFO-poss 유기 발광층을 가지는 고분자 발광다이오드의 제작)

  • Yoo, Jae-Hyouk;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) with ITO/EDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by the spin coating method on ITO(indium tin oxide)/glass substrates. PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with poss] was used as light emitting polymer. PVK[poly(N-vinyl carbazole)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the hole injection and transport materials. The effect of PFO-poss concentration and the heating temperatures on the electrical and optical properties of the devices were investigated. At the same concentration of PFO-poss solution, the current density and luminance of PLED device tend to increase as the annealing temperature increase from $100^{\circ}C$ to $200^{\circ}C$. The maximum luminance was found to be about 958 cd/m2 at 13V for the PLED device with 1.0 wt% PFO-poss at the annealing temperature of $200^{\circ}C$. In addition, the PLED device showed bluish white emission through the strong greenish peak with 523 nm in wavelength. As the concentration of PFO-poss increase from 0.5 wt% to 1.0 wt% and temperature of PLEDs increase from $100^{\circ}C$ to $200^{\circ}C$, the emission color tend to be shifted from blue with (x, y) = (0.17,0.14) to bluish white with (x, y) : (0.29,0.41) in CIE color coordinate.

  • PDF

Fabrication of Hybrid Nanocomposites of PAA-grafted Graphene and Pd Nanoparticles having POSS (Pd-POSS) (그래핀과 실세스키옥세인을 포함한 팔라듐 나노입자와의 나노복합체 제조)

  • Lim, Jung-Hyurk;Ko, Yl-Woong;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.656-661
    • /
    • 2012
  • The palladium nanoparticles were self-assembled to make Pd-POSS using POSS-$NH_3{^+}$ (polyhedral oligomeric silsesquioxane) as a crosslinker. Graphene oxide (GO) was produced by the reaction of graphite under a strong acid and oxidizer and poly(acrylic acid) (PAA) was covalently grafted on the surface of graphene to make PAA-grafted graphene through the radical polymerization of acrylic acid and GO along with a reduction process under $NaBH_4$. The nanocomposites of Pd-POSS and PAA-grafted graphene were fabricated via ionic interactions between positively charged Pd-POSS and negatively charged PAA-grafted graphene. Pd-POSS nanoparticles were attached to the surface of PAA-grafted graphene through ionic interactions. The thermal stability of Pd-POSS/PAA-grafted graphene was higher than that of PAA and PAA-grafted graphene. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA-grafted graphene were studied by FE-SEM, AFM, TEM, FTIR, and TGA.

Improved Air Stability of OTFT's with a P3HT/POSS Active Layer (P3HT/POSS 합성 활성층을 이용한 OTFT 소자의 대기안정성 향상)

  • Park, Jeong-Hwan;Han, Kyo-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.107-113
    • /
    • 2009
  • In order to improve air stability, we proposed a new active layer of an organic TFT by synthesizing P3HT/POSS conjugated polymer. P3HT/POSS OTFTs with the various P3HT/POSS volume ratios were fabricated and characterized. With the P3HT/POSS volume ratio of 1:1, we achieved the field-effect mobilities of ${\sim}1.19{\times}10^{-3}\;cm^2/v{\cdot}sec$ in the saturation region and the current on/off ratio of ${\sim}2.51{\times}10^2$. The resulting current on-off ratio was much higher than that of the P3HT-based OTFTs and resulted from the dramatic decrease of the off-current. Since the off-current can be reduced by preventing oxygen in atmosphere from doping the P3HT/POSS active layers, this new active layer shows its ability to avoid oxygen doping in atmosphere. Therefore, the improvement of the air stability can be achieved by employing the P3HT/POSS active layers.

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

In-situ Synthesis of Polyamide-6/POSS Nanocomposites

  • Ramasundaram Subramaniya Pillai;Kim Kap-Jin
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.303-303
    • /
    • 2006
  • In-situ ring opening polymerization of ${\varepsilon}-caprolactum$ was carried out in the presence of aminoethylaminopropylisobutyl POSS and stoichiometric amount of adipic acid. The covalent bond formation of POSS on the polyamide was confirmed by the appearance of FT-IR peak at $1123\;cm^{-1}$ that corresponds to the Si-O stretching of POSS structures. Gradual decrease in melting endotherm peak was observed on loading POSS in PA6/POSS nanocomposites. Sharp increase in intrinsic viscosity was observed upto 2.5 wt % loading POSS in the polyamide 6 nanocomposites. These nanocomposites were further characterized using nuclear magnetic resonance, melt viscosity and X-ray diffraction.

  • PDF

Hybrid Nanocomposites of Palladium Nanoparticles Having POSS and MWNTs via Ionic Interactions

  • Jeon, Jong-Hwan;Lim, Jung-Hyurk;Kim, Kyung-Min
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.987-994
    • /
    • 2009
  • Palladium nanoparticles having cubic silsesquioxanes (POSS) (Pd-POSS) were produced by the reaction of palladium (II) acetate and octa(3-aminopropyl)octasilsesquioxane octahydrochloride (POSS-${NH_3}^+$ in methanol at room temperature. Functionalized multiwalled carbon nanotubes (MWNT-COOH) were prepared by acid treatment of pristine MWNTs. The hybrid nanocomposites of Pd-POSS and MWNT-COOH (Pd-MWNT nanocomposites) were synthesized by self-assembly method via ionic interaction between positively charged Pd-POSS and negatively charged MWNT-$COO^-$. The spherical aggregates of Pd-POSS with a diameter of 40-60 urn were well attached to the surfaces of MWNT-COOH on Silicon wafer. The composition, structure, and surface morphology of Pd-MWNT nanocomposites were studied by UV-vis spectrophotometer, energy dispersive spectrum (EDX), scanning electron microscopy (SEM), and atomic force microscope (AFM).