DOI QR코드

DOI QR Code

Fabrication of Hybrid Nanocomposites of PAA-grafted Graphene and Pd Nanoparticles having POSS (Pd-POSS)

그래핀과 실세스키옥세인을 포함한 팔라듐 나노입자와의 나노복합체 제조

  • Lim, Jung-Hyurk (Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Ko, Yl-Woong (Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Kim, Ki-Young (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology) ;
  • Kim, Kyung-Min (Department of Polymer Science and Engineering, Korea National University of Transportation)
  • 임정혁 (한국교통대학교 나노고분자공학과) ;
  • 고일웅 (한국교통대학교 나노고분자공학과) ;
  • 김기영 (한국생산기술연구원 바이오나노섬유융합연구그룹) ;
  • 김경민 (한국교통대학교 나노고분자공학과)
  • Received : 2012.04.11
  • Accepted : 2012.04.18
  • Published : 2012.09.25

Abstract

The palladium nanoparticles were self-assembled to make Pd-POSS using POSS-$NH_3{^+}$ (polyhedral oligomeric silsesquioxane) as a crosslinker. Graphene oxide (GO) was produced by the reaction of graphite under a strong acid and oxidizer and poly(acrylic acid) (PAA) was covalently grafted on the surface of graphene to make PAA-grafted graphene through the radical polymerization of acrylic acid and GO along with a reduction process under $NaBH_4$. The nanocomposites of Pd-POSS and PAA-grafted graphene were fabricated via ionic interactions between positively charged Pd-POSS and negatively charged PAA-grafted graphene. Pd-POSS nanoparticles were attached to the surface of PAA-grafted graphene through ionic interactions. The thermal stability of Pd-POSS/PAA-grafted graphene was higher than that of PAA and PAA-grafted graphene. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA-grafted graphene were studied by FE-SEM, AFM, TEM, FTIR, and TGA.

케이지 구조의 POSS-$NH_3{^+}$를 이용하여 팔라듐 입자들의 자기 조직화로 인한 구조가 제어된 Pd-POSS 나노입자를 제조하였다. 또한 흑연을 강산과 산화제를 이용하여 산화된 그래핀 옥사이드(GO)를 합성한 후 얻어진 GO와 NaBH4와의 반응을 통하여 그래핀을 제조하였다. 합성된 그래핀과 acrylic acid와 라디칼 중합 반응을 통하여 그래핀 표면에 poly(acrylic acid)(PAA)가 결합된 PAA-grafted graphene을 얻었다. Pd-POSS와 PAA-grafted graphene을 이용한 나노복합체는 POSS-$NH_3{^+}$로 인하여 양전하를 띠는 Pd-POSS 나노입자와 PAA로 인하여 음전하를 띠는 PAA-grafted graphene와의 정전기적 인력을 이용하여 제조하였다. Pd-POSS 나노입자가 PAA로 치환된 그래핀 표면에 정전기적 인력으로 결합되어 있고, 나노복합체의 열적 안정성은 PAA와 PAA-grafted graphene 보다 우수한 것을 확인할 수 있었다. 제조된 Pd-POSS/PAA-grafted graphene 나노복합체의 구조 및 형태와 열적 안정성은 FE-SEM, AFM, TEM, EDX, FTIR과 TGA를 통하여 분석하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. K. S. Novoselov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. Z. Yanwu, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  3. S. Park and R. S. Ruoff, Nat. Nanotechnol., 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58
  4. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/b917103g
  5. H. He, J. Klinowski, M. Foster, and A. Lert, Chem. Phys. Lett., 287, 53 (1998). https://doi.org/10.1016/S0009-2614(98)00144-4
  6. S. Stankovich, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  7. S. Stankovich, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  8. I. K. Moon, J. H. LEE, R. S. Ruoff, and H. Y. Lee, Nat. Commun., 1, 73 (2010).
  9. L. Dan, Nat. Nanotechnol., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  10. S. Park, Chem. Mater., 20, 6592 (2008). https://doi.org/10.1021/cm801932u
  11. S. Park, J. An, and I. Jung, Nano Lett., 9, 1593 (2009). https://doi.org/10.1021/nl803798y
  12. R. Muszynski, B. Seger, and P. V. Kamat, J. Phys. Chem. C, 112, 5263 (2008). https://doi.org/10.1021/jp800977b
  13. K. M. Kim, D. K. Keum, and Y. Chujo, Macromolecules, 36, 867 (2003). https://doi.org/10.1021/ma021303b
  14. K. M. Kim and Y. Chujo, J. Mater. Chem., 13, 1384 (2003). https://doi.org/10.1039/b211030j
  15. K. M. Kim and Y. Chujo, J. Polym. Sci. Part A: Polym. Chem., 41, 1306 (2003). https://doi.org/10.1002/pola.10664
  16. K. M. Kim, K. Adachi, and Y. Chujo, Polymer, 43, 1171 (2002). https://doi.org/10.1016/S0032-3861(01)00732-7
  17. K. M. Kim and Y. Chujo, J. Polym. Sci. Part A: Polym. Chem., 39, 4035 (2001). https://doi.org/10.1002/pola.10048
  18. K. Naka, H. Itoh, and Y. Chujo, Nano Lett., 2, 1183 (2002). https://doi.org/10.1021/nl025713p
  19. S. Luecke and K. Stoppek-Langner, Appl. Aurf. Sci., 144, 713 (1999). https://doi.org/10.1016/S0169-4332(98)00912-X
  20. G. Li, L. Wang, H. Ni, and C. U. Pittman, J. Inorg. Organomet. Polym., 11, 123 (2001). https://doi.org/10.1023/A:1015287910502
  21. B. X. Fu, L. Yang, R. H. Somani, and S. X. Zong, J. Polym. Sci. Part B: Polym. Phys., 39, 2727 (2001). https://doi.org/10.1002/polb.10028
  22. B. X. Fu, M. Y. Gelfer, B. S. Hsiao, S. Phillips, B. Viers, and R. Blansky, Polymer, 44, 1499 (2003). https://doi.org/10.1016/S0032-3861(03)00018-1
  23. M. Joshi and B. S. Butola, Polymer, 45, 4953 (2004). https://doi.org/10.1016/j.polymer.2004.04.057
  24. J. Shen, Y. Hu, C. Li, C. Qin, M. Shi, and M. Ye, Langmuir, 25, 6122 (2009). https://doi.org/10.1021/la900126g
  25. J. H. Jeon, J. H. Lim, Y. Chujo, and K. M. Kim, Polymer(Korea), 33, 615 (2009).

Cited by

  1. Synthesis and characterization of a new hybrid polyphosphazene containing two symmetrical polyhedral oligomeric silsesquioxane (POSS) units vol.47, pp.6, 2015, https://doi.org/10.1038/pj.2015.12
  2. Creation of spherical aggregates of Pd nanoparticles on the surface of POSS-modified graphene oxide vol.73, pp.9, 2016, https://doi.org/10.1007/s00289-016-1685-4
  3. Synthesis and Characterization of Novel Hybrid Ladderlike Polysilsesquioxanes Containing Polypropylene Moieties vol.845, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.845.204