DOI QR코드

DOI QR Code

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM

OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향

  • Received : 2017.09.20
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

복합재료의 우주환경에서의 사용이 증가하면서 복합재료의 우주환경저항성에 대한 연구가 수행되어 왔다. 우주환경 중에서도 원자 산소는 복합재료의 기지재료와 반응하고 표면을 침식하여 이에 대한 보호는 필수적이다. 본 연구에서는 원자 산소 저항성 향상을 위해 연구되고 있는 POSS(Polyhedral Oligomeric Silsesquioxane)의 하나인 OG POSS(Octaglycidyldimethylsilyl POSS)를 DGEBA/DDM 에폭시에 첨가하여 OG POSS/에폭시 나노복합재료를 제작하였고 OG POSS로 인하여 발생하는 열적, 기계적 물성의 변화를 확인하였다. FT-IR 분광기를 통하여 경화도와 나노복합재료 내의 OG POSS를 확인하였다. 나노복합재료의 열물성을 측정하기 위하여 열중량분석과 시차주사열량분석을 수행한 결과, 초기 질량감소온도가 향상되었고 char yield가 증가하였다. OG POSS의 함량이 증가하면서 Tg는 OG POSS 5 wt.%까지 증가하는 추세를 보였지만, 10 wt.%에서 크게 감소하는 것을 알 수 있었다. OG POSS 나노복합재료에 대하여 수행된 인장시험에서는 OG POSS가 10 wt.% 함유되었을 때까지 에폭시의 인장물성을 유지함을 확인하였다.

Keywords

References

  1. Banks, B.A., Rutledge, S.K., Auer, B.M., and DiFilippo, F., "Atomic Oxygen Undercutting of Defects on $SiO_2$ Protected Polyimide Solar Array Blankets," NASA Technical Reports, 19910065180, 1990.
  2. Jin, S.B., Son, G.S., Kim, Y.H., and Kim, C.G., "Enhanced Durability of Silanized Multi-walled Carbon Nanotube/epoxy Nanocomposites under Simulated Low Earth Orbit Space Environment," Composites Science and Technology, Vol. 87, 2013, pp. 224-231. https://doi.org/10.1016/j.compscitech.2013.08.017
  3. Noh, J.Y., Jin, S.B., and Kim, C.G., "Characteristics of Silane Treated Graphene Filled Nanocomposites Exposed to Low Earth Orbit Space Environment," Composites Research, Vol. 28, Issue 3, 2015, pp. 130-135. https://doi.org/10.7234/composres.2015.28.3.130
  4. Wang, X., Zhao, X., Wang, M., and Shen, Z., "An Experimental Study on Improving the Atomic Oxygen Resistance of Epoxy Resin/silica Nanocomposites," Polymer Engineering & Science, Vol. 47, Issue 7, 2007, pp. 1156-1162. https://doi.org/10.1002/pen.20659
  5. Liu, B., Pei, X., Wang, Q., Sun, X., and Wang, T., "Effects of Atomic Oxygen Irradiation on Structural and Tribological Properties of Polyimide/$Al_2O_3$ Composites," Surface and Interface Analysis, Vol. 44, Issue 3, 2012, pp. 372-376. https://doi.org/10.1002/sia.3814
  6. Verker, R., Grossman, E., Gouzman, I., and Eliaz, N., "TriSilanolPhenyl POSS-polyimide Nanocomposites: Structure-properties Relationship," Composites Science and Technology, Vol. 69, Issue 13, 2009, pp. 2178-2184. https://doi.org/10.1016/j.compscitech.2009.06.001
  7. Minton, T.K., Wright, M.E., Tomczak, S.J., Marquez, S.A., Shen, L., Brunsvold, A.L., Cooper, R., Zhang, J., Vij, V., Guenthner, A. J., and Petteys, B.J., "Atomic Oxygen Effects on POSS Polyimides in Low Earth Orbit," ACS applied Materials & Interfaces Vol. 4, No. 2, 2012, pp. 492-502. https://doi.org/10.1021/am201509n
  8. Zucchi, I.A., Galante, M.J., Williams, R.J.J, Franchini, E., Galy, J. and Gerard, J.F., "Monofunctional Epoxy-POSS Dispersed in Epoxy-amine Networks: Effect of a Prereaction on the Morphology and Crystallinity of POSS Domains," Macromolecules Vol. 40, No. 4, pp. 1274-1282. https://doi.org/10.1021/ma062188y
  9. Choi, J., Harcup, J., Yee, A.F., Zhu, Q., and Laine R.M., "Organic/inorganic Hybrid Composites from Cubic Silsesquioxanes," Journal of the American Chemical Society, Vol. 123, No. 46, 2001, pp. 11420-11430. https://doi.org/10.1021/ja010720l
  10. Takala, M., Karttunen, M., Pelto, J., Salovaara, P., Munter, T., Honkanen, M., Auletta, T., and Kannus, K., "Thermal, Mechanical and Dielectric Properties of Nanostructured Epoxy-polyhedral Oligomeric Silsesquioxane Composites," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, Issue 5, 2008, pp. 1224-1235. https://doi.org/10.1109/TDEI.2008.4656229
  11. Huang, J.M., Huang, H.J., Wang, Y.X., Chen, W.Y., and Chang, F.C., "Preparation and Characterization of Epoxy/polyhedral Oligomeric Silsesquioxane Hybrid Nanocomposites," Journal of Polymer Science Part B: Polymer Physics, Vol. 47, Issue 19, 2009, pp. 1927-1934. https://doi.org/10.1002/polb.21788