• Title/Summary/Keyword: PNIPAM

Search Result 13, Processing Time 0.019 seconds

Preparation of PNIPAM Hydrogel Containing Lipoic Acid (리포익산을 함유한 PNIPAM 하이드로젤의 제조)

  • Yoon, Hye-Ri;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • Poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been studied as an important drug delivery system due to its volume transition or temperature-responsive swelling properties, whose phase separation temperature is similar to the body temperature. However, because of hydrophilic PNIPAM, hydrophobic drugs are difficult to be uniformly loaded in the networks. Antioxidant alpha-lipoic acid (LA) can be prepared as a polymer(polylipoic acid, PLA) by ring opening polymerization, which is hardly developed as a material due to its low molecular weight and easy depolymerization. To overcome this limitation, a hydrophobic active ingredient, LA was reacted with NIPAM into stable hydrogels. Simple thermal radical reaction successfully resulted in a hydrogel (PNIPAM/PLA), which was confirmed by DSC, FTIR, and Raman spectroscopy. The PNIPAM/PLA showed temperature-responsive properties, and their volume swelling decreased with an increase in lipoic acid content. These hydrogels can carry hydrophobic drugs with PNIPAM and the hydrogels could be useful as final drug delivery systems having lipoic acid as an antioxidant.

Structural Properties of Polyaniline Blended with PNIPAM

  • Neupane, Kosh-Prasad;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.209-213
    • /
    • 2003
  • Polyaniline (PANi) composite particles were synthesized by chemical oxidation polymerization of aniline in presence of poly-n-isopropyl acryl amide (PNIPAM). The PANi particles formed in the reaction medium deposited onto non-conducting PNIPAM template to produce PANi-coated composite particles. The formation of composite was confirmed by FT-IR spectroscopy, and UV-VIS spectroscopy, and their morphological structures were examined by scanning electron microscopy (SEM). From the experimental results, it was determined that PANi was successfully coated onto non-conducting PNIPAM.

  • PDF

Synthesis of Thermoresponsive Poly (N-isopropylacrylamide)/Clay Nanocomposites (열응답성 Poly(N-isopropylacrylamide)/Clay 나노복합재료의 합성)

  • 김정필;유성구;배광수;서길수
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.263-269
    • /
    • 2001
  • MAPTAC-MMT was prepared by exchanging the mineral cation (sodium montmorillonite) with 3-(methacryloyl amino) propyltrimethyl ammonium chloride, thus rendering the mineral organophilic and forming polymerizable moieties directly bonded to the surface of montmorillonite (MMT). Thermoresponsive nanocomposites (PNIPAM-MMT) were synthesized by polymerization of N-isopropyl acrylamide in an aqueous suspension of MAPTAC-MMT at room temperature. Thermoresponsive nanocomposites exhibited a low critical solution temperature (LCST) similar to unmodified poly(N-isopropyl acrylamide) (PNIPAM). The LCST of thermoresponsive nanocomposites decreased in proportion to the amount of MAPTAC-MMT. TGA results showed that the thermal stability of thermoresponsive nanocomposites was improved compared to PNIPAM itself the thermoresponsive polymer.

  • PDF

Structural Properties of polyaniline blended with PNIPAM

  • Neupane, Kosh-Prasad;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.334-336
    • /
    • 2003
  • Polyaniline(PANi) composite panicles were synthesized by chemical oxidation polymerization of aniline in presence of Poly-N-Isopropyl acryl amide(PNIPAM). The PANi panicles are formed in the reaction medium deposited onto non-conducting PNIPAM template to produce PANi-coated composite panicles. The formation of composite was confirmed by FT-IR spectroscopy, and UV-VIS spectroscopy, and their morphological structures were examined by scanning electron microscopy(SEM). From the experimental results, it was determined that PANi was successfully coated onto non-conducting PANIPAM.

  • PDF

Liquid Metal Enabled Thermo-Responsive Poly(N-isopropylacrylamide)Hydrogel for Reversible Electrical Switch (액체금속이 첨가된 온도 감응성 poly(N-isopropylacrylamide) 하이드로젤의 전기적 특성 변화 고찰)

  • Lim, Taehwan;Lee, Sohee;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • Hydrogels have gained considerable attention in various fields due to their easily transformative ability by different stimulation. In addition, metal-based conductive additives can enable the hydrogels to be conductive with dimension change. Although the development of the additives offered enhanced electrical properties to the hydrogels, correspondingly enhanced mechanical properties may limit the volume and electrical properties switching after stimulation. Here we prepared poly(N-isopropylacrylamide) (PNIPAM) thermo-responsive hydrogel that has a 32℃ of low critical solution temperature and added liquid metal particles (LMPs) as conductive additives, possessing soft and stretchable benefits. The LMPs enabled PNIPAM (PNIPAM/LMPs) hydrogels to be constricted over 32℃ with a high volume switching ratio of 15.2 when deswelled. Once the LMPs are spontaneously oxidized in hydrogel culture, the LMPs can release gallium ions into the hydrogel nature. The released gallium ions and oxidized LMPs enhanced the modulus of the PNIPAM/LMPs hydrogel, triggering high mechanical stability during repeated swelling/deswelling behavior. Lastly, highly constricted PNIPAM/LMPs hydrogel provided a 5x106 of electrical switching after deswelling, and the switching ratio was closely maintained after repeated swelling/deswelling transformation. This study opens up opportunities for hydrogel use requiring thermo-responsive and high electrical switching fields.

Preparation and Properties of Crosslinked Thermo-responsive Poly(N-isopropylacrylamide) Gel Materials For Smart Windows - Effect of Glycerol Content in Water/Glycerol Solvent - (스마트 윈도우용 가교 열감응성 폴리(N-이소프로필아마이드) 겔 소재의 제조 및 특성 - 물/글리세롤 혼합용매 중의 글리세롤 함량의 영향 -)

  • Park, Jae-Hyong;Kim, Il-Jin;Lee, Dong-Jin;Sim, Jae-Hak;Song, Min-Seop;Lee, Young-Hee;Yoo, Jung-Whan;Kim, Han-Do
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • Thermo-responsive polymers that exhibit phase transition in response to temperature change can be used as materials for smart windows because they can control solar light transmission depending on the outside temperature. The development of thermo-responsive polymers for smart windows that can be used over a wide temperature range is desirable. To obtain high performance smart windows materials, three-dimensional thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) gels were prepared by free radical polymerization from monomer N-isopropylacrylamide, N, N'-methylenebis acrylamide (MBAm) as a crosslinking agent, ammonium persulfate (APS) as a strong oxidizing agent/tetramethylene diamine as a catalyst, and a mixture of two solvents (water/glycerol). This study examined the effect of glycerol content on the lower critical solution temperature (LCST), freezing temperature and the solar light transmittance of crosslinked PNIPAm gel films. The LCST and freezing temperature of PNIPAm gel films were found to be significantly decreased from 34.3 and $6.3^{\circ}C$ to 28.2 and $-6.5^{\circ}C$ with increasing glycerol content from 0 wt% to 10 wt%, respectively. It was found that the transparent PNIPAm gel films at $25^{\circ}C$ (temperature < LCST) were converted to translucent gels at higher temperature ($45^{\circ}C$) (temperature > LCST). These results suggested that the crosslinked PNIPAm gel materials prepared in this study could have high potential for application in smart glass materials.

Temperature-Sensitive Polymers Adhered on FO Membrane as Drawing Agents (자극감응성 유도용질로서 정삼투막에 부착된 온도감응성 고분자)

  • Lee, Chong-Cheon;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.626-631
    • /
    • 2014
  • Water purification requires a large amount of energy that can cause pollution problems. For this reason, forward osmosis (FO) has attracted intense interest that required a relatively low amount of energy for water purification. The forward osmosis has a serious problem that it needs drawing agents creating osmotic pressure to extract water from contaminated water. In this study, a copolymer of zwitterionic moiety and an interpenetrating polymer network (IPN) hydrogel based on thermo-responsive polymer hydrogel, poly(N-isopropylacrylamide) (PNIPAM) were prepared and attached on FO membranes, which successfully played the role of drawing agents. In the copolymer hydrogel, its swelling ratio was improved, but thermo-sensitivity was decreased. The swelling ratio and thermo-sensitivity of IPN hydrogel was lowered. We could confirm that swelling ratio is related to osmotic pressure.

Relative Parameter Contributions for Encapsulating Silica-Gold Nanoshells by Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels

  • Park, Min-Yim;Lim, Se-Ra;Lee, Sang-Wha;Park, Sang-Eun
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.307-312
    • /
    • 2009
  • Core-shell hydrogel nanocomposite was fabricated by encapsulating a silica-gold nanoshell (SGNS) with poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) copolymer. The oleylamine-functionalized SONS was used as a nanotemplate for the shell-layer growth of hydrogel copolymer. APS (ammonium persulfate) was used as a polymerization initiator to produce a hydrogel-encapsulated SGNS (H-SGNS). The amounts of NIPAM (N-isopropylacrylamide) monomers were optimized to reproduce the hydrogel-encapsulated SGNS. The shell-layer thickness was increased with the increase of polymerization time and no further increase in the shell-layer thickness was clearly observed over 16 h. H-SGNS exhibited the systematic changes of particle size corresponding to the variation of pH and temperature, which was originated from hydrogen-bonding interaction between PNIPAM amide groups and water, as well as electrostatic forces attributed by the ionization of carboxylic groups in acrylic acid.