DOI QR코드

DOI QR Code

Preparation and Properties of Crosslinked Thermo-responsive Poly(N-isopropylacrylamide) Gel Materials For Smart Windows - Effect of Glycerol Content in Water/Glycerol Solvent -

스마트 윈도우용 가교 열감응성 폴리(N-이소프로필아마이드) 겔 소재의 제조 및 특성 - 물/글리세롤 혼합용매 중의 글리세롤 함량의 영향 -

  • Park, Jae-Hyong (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Il-Jin (Korea Institute of Footwear and Leather Technology) ;
  • Lee, Dong-Jin (Korea Institute of Footwear and Leather Technology) ;
  • Sim, Jae-Hak (Korea Institute of Footwear and Leather Technology) ;
  • Song, Min-Seop (Korea Institute of Footwear and Leather Technology) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Yoo, Jung-Whan (KNW) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 박재형 (부산대학교 유기소재시스템공학과) ;
  • 김일진 (한국신발피혁연구원) ;
  • 이동진 (한국신발피혁연구원) ;
  • 심재학 (한국신발피혁연구원) ;
  • 송민섭 (한국신발피혁연구원) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 유중환 ((주)케에엔더블유) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2018.01.24
  • Accepted : 2018.02.28
  • Published : 2018.06.30

Abstract

Thermo-responsive polymers that exhibit phase transition in response to temperature change can be used as materials for smart windows because they can control solar light transmission depending on the outside temperature. The development of thermo-responsive polymers for smart windows that can be used over a wide temperature range is desirable. To obtain high performance smart windows materials, three-dimensional thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) gels were prepared by free radical polymerization from monomer N-isopropylacrylamide, N, N'-methylenebis acrylamide (MBAm) as a crosslinking agent, ammonium persulfate (APS) as a strong oxidizing agent/tetramethylene diamine as a catalyst, and a mixture of two solvents (water/glycerol). This study examined the effect of glycerol content on the lower critical solution temperature (LCST), freezing temperature and the solar light transmittance of crosslinked PNIPAm gel films. The LCST and freezing temperature of PNIPAm gel films were found to be significantly decreased from 34.3 and $6.3^{\circ}C$ to 28.2 and $-6.5^{\circ}C$ with increasing glycerol content from 0 wt% to 10 wt%, respectively. It was found that the transparent PNIPAm gel films at $25^{\circ}C$ (temperature < LCST) were converted to translucent gels at higher temperature ($45^{\circ}C$) (temperature > LCST). These results suggested that the crosslinked PNIPAm gel materials prepared in this study could have high potential for application in smart glass materials.

온도 변화에 따라 상 전이를 나타내는 열 감응성 고분자는 외부 온도 감응으로 태양광 투과 조절이 가능하므로 스마트 윈도우용 소재로 적용 가능하다. 넒은 온도 범위에서 사용 가능한 스마트 윈도용 열감응성 고분자의 개발은 바람직하다. 고 성능스마트 윈도우용 소재를 얻기 위하여, 단량체 N-isopropylacrylamide, 가교제 N, N'-methylenebisacrylamide (MBAm), 산화개시제 ammonium persulfate (APS)/촉매 tetramethylene diamine 및 혼합용매(물/글리세롤)을 사용하여 3차원의 열감응성(thermoresponsive) poly(N-isopropylacrylamide) (PNIPAm) 겔을 제조하였다. 본 연구에서는 혼합용매 중의 글리세롤의 함량이 가교된 PNIPAm 겔 필름의 하한임계온도(low critical solution temperature, LCST), 어는점 및 태양광의 투광도에 미치는 영향을 조사하였다. 글리세롤 함량이 0 wt%에서 10 wt%로 증가하면 PNIPAm 겔 필름의 LCST/어는점은 각각 $34.3/6.3^{\circ}C$에서 $28.2/-6.5^{\circ}C$로 감소함을 알 수 있었다. LCST보다 낮은 $25^{\circ}C$에서는 본 연구에서 합성한 모든 PNIPAm 겔 필름은 투명(광 투과)하지만 LCST보다 높은 $45^{\circ}C$에서는 불투명하다는 것을 알 수 있었다. 이러한 결과는 본 연구에서 합성한 PNIPAm 겔 소재는 $-6.5^{\circ}C$ 부근에서도 스마트 윈도우용 소재로 활용할 가능성이 높음을 알 수 있다.

Keywords

References

  1. Bajpai, A. K., Shukla, S. K., Bhanu, S., and Kankane, S., "Responsive Polymers in Controlled Drug Delivery," Prog. Polym. Sci., 33, 1088-1118 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.005
  2. Shiroya, T., Yasui, M., Fujimoto, K., and Kawaguchi, H., "Enzyme Immobilization on Thermosensitive Hydrogel Microspheres," Colloids Surf. B: Biointerfaces, 4, 267-274 (1995). https://doi.org/10.1016/0927-7765(94)01177-7
  3. Maeda, Y., Mochiduki, H., and Ikeda, I., "Hydration Changes During Thermosensitive Association of a Block Copolymer Consisting of LCST and UCST Blocks," Macromol. Rapid Commun., 25, 1330-1334 (2004). https://doi.org/10.1002/marc.200400062
  4. Ganta, S., Devalapally, H., Shahiwala, A., and Amiji, M., "A Review of Stimuli-responsive Nanocarriers for Drug and Gene Delivery," J. Control Release, 126, 187-204 (2008). https://doi.org/10.1016/j.jconrel.2007.12.017
  5. Kikuchi, A., and Okano, T., "Intelligent Thermoresponsive Polymeric Stationary Phases for Aqueous Chromatography of Biological Compounds," Prog. Polym. Sci., 27, 1165-1193 (2002). https://doi.org/10.1016/S0079-6700(02)00013-8
  6. Kumar, A., Srivastava, A., Galaev, I. Y., and Mattiasson, B., "Smart Polymers: Physical Forms and Bioengineering Applications," Prog. Polym. Sci., 32, 1205-1237 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.003
  7. Wang, S. M., Liu, L., Chen, W. L., Zhang, Z. M., Su, Z. M., and Wang, E. B., "A New Electrodeposition Approach for Preparing Polyoxometalates-based Electrochromic Smart Windows," J. Mater. Chem. A, 1, 216-220 (2013). https://doi.org/10.1039/C2TA00486K
  8. Gao, Y. F., Cao, C. X., Dai, L., Luo, H. J., Kanehira, M., Ding, Y., and Wang, Z. L., "Phase and Shape Controlled VO2 Nanostructures by Antimony Doping," Energy Environ. Sci., 5, 8708-8715 (2012). https://doi.org/10.1039/c2ee22290f
  9. Zhang, Z. T., Gao, Y. F., Luo, H. J., Kang, L. T., Chen, Z., Du, J., Kanehira, M., Zhang, Y. Z., and Wang, Z. L., "Solution-based Fabrication of Vanadium Dioxide on F:SnO2 Substrates with Largely Enhanced Thermochromism and Low-emissivity for Energy-saving Applications," Energy Environ. Sci., 4, 4290-4297 (2011). https://doi.org/10.1039/c1ee02092g
  10. Saeli, M., Piccirillo, C., Parkin, I. P., Ridley, I., and Binions, R., "Nano-composite Thermochromic Thin Films and Their Application in Energy-efficient Glazing," Sol. Energy Mater. Sol. Cells, 94, 141-151 (2010). https://doi.org/10.1016/j.solmat.2009.08.010
  11. Wang, N., Huang, Y., Magdassi, S., Mandler, D., Liu, H., and Long, Y., "Formation of $VO_2$ Zero-dimensional/Nanoporous Layers with Large Supercooling Effects and Enhanced Thermochromic Properties," RSC Adv., 3, 7124-7128 (2013). https://doi.org/10.1039/c3ra40370j
  12. Mlyuka, N. R., Niklasson, G. A., and Granqvist, C. G., "Mg Doping of Thermochromic $VO_2$ Films Enhances The Optical Transmittance and Decreases the Metal-insulator Transition Temperature," Appl. Phys. Lett., 95, 171909-1-3 (2009). https://doi.org/10.1063/1.3229949
  13. Seeboth, A., Schneider, J., and Patzak, A., "Materials for Intelligent Sun Protecting Glazing," Sol. Energy Mater. Sol. Cells, 60, 263-277 (2000). https://doi.org/10.1016/S0927-0248(99)00087-2
  14. Watanabe, H., "Intelligent Window Using a Hydrogel Layer for Energy Efficiency," Sol. Energy Mater. Sol. Cells, 54, 203-211 (1998). https://doi.org/10.1016/S0927-0248(98)00072-5
  15. Szilagyi, A., Gyenes, T., Filipcsei, G., and Zrinyi, M., "Thermotropic Polymer Gels: Smart Gel Glass," Macromol. Symp., 227, 357-366 (2005).
  16. Zhou, Y., Cai, Y., Hu, X., and Long, Y., "Temperature-responsive Hydrogel with Ultra-large Solar Modulation and High Luminous Transmission for "Smart Window" Applications," J. Mater. Chem. A, 2, 13550-13555 (2014). https://doi.org/10.1039/C4TA02287D
  17. Schild, H., "Poly(N-isopropylacrylamide): Experiment, Theory and Application," Prog. Polym. Sci., 17, 163-249 (1992). https://doi.org/10.1016/0079-6700(92)90023-R
  18. Debord, J. D., and Lyon, L. A., "Synthesis and Characterization of pH-Responsive Copolymer Microgels with Tunable Volume Phase Transition Temperatures," Langmuir, 19, 7662-7664 (2003). https://doi.org/10.1021/la0342924
  19. Xia, Y., Yin, X., Burke, N. A., and Stover, H. D., "Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization," Macromolecules, 38, 5937-5943 (2005). https://doi.org/10.1021/ma050261z
  20. Socrates, G., Infrared Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, Ltd, New York, 42-80 (1994).
  21. Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., and Wetterlind, J., "Visible and Near Infrared Spectroscopy in Soil Science," Adv. in Agronomy, 107, 163-215 (2010).
  22. Ager, C., and Milton, N., "Spectral Reflectance of Lichens and Their Effects on the Reflectance of Rock Substrates," Geophysics, 52, 898-906 (1987). https://doi.org/10.1190/1.1442360