• Title/Summary/Keyword: PN contact

Search Result 21, Processing Time 0.022 seconds

Analysis of Increasing the Conduction of V2O5 Thin Film on SiO2 Thin Film (SiO2 절연박막에 의해서 바나듐옥사이드 박막이 전도성이 높아지는 원인분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.14-18
    • /
    • 2018
  • Generally. the Ohmic's law is an important factor to increase the conductivity in a micro device. So it is also known that the Ohmic contact in a semiconductor device is import. The PN junction as a structure of semiconductor involves the depletion layer, and this depletion layer induces the non linear electrical properties and also makes the Schottky contact as an intrinsic characteristics of semiconductor. To research the conduction effect of insulators in the semiconductor device, $SiO_2$ thin film and $V_2O_5/SiO_2$ thin film were researched by using the current-voltage system. In the nano electro-magnetic system, the $SiO_2$ thin film as a insulator had the non linear Schottky contact, and the as deposited $V_2O_5$ thin film had the linear Ohmic contact owing to the $SiO_2$ thin film with superior insulator's properties, which decreases the leakage current. In the positive voltage, the capacitance of $SiO_2$ thin film was very low, but that of $V_2O_5$ thin film increased with increasing the voltage. In the normal electric field system, it was confirmed that the conductivity of $V_2O_5$ thin film was increased by the effect of $SiO_2$ thin film. It was confirmed that the Schottky contact of semiconductors enhanced the performance of electrical properties to increased the conductivity.

A SPICE-based 3-dimensional circuit model for Light-Emitting Diode (SPICE 기반의 발광 다이오드 3차원 회로 모델)

  • Eom, Hae-Yong;Yu, Soon-Jae;Seo, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.7-12
    • /
    • 2007
  • A SPICE-based 3-dimensional circuit model of LED(Light-Emitting Diode) was developed for the design optimization and analysis of high-brightness LEDs. An LED is represented as an array of pixel LEDs with small preassigned areas, and each of the pixel LEDs is composed of circuit networks representing the thin-film layers(n-metal, n- and p-type semiconductor layers, and p-metal), ohmic contacts, and pn-junctions. Each of the thin-film layers and contact resistances is modeled by a resistance network, and the pn-junction is modeled by a conventional pn-junction diode. It has been found that the simulation results using the model and the corresponding parameters precisely fit the measured LED characteristics.

A Study of Thin Film deposition using of RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 박막 증착에 관한 연구)

  • Lee, Woo Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.772-777
    • /
    • 2018
  • This paper used RF Magnetron Sputtering to deposition n-type and p-type to ITO glass. The N-type ohmic contact worked well under all conditions. Sheet resistance has been shown to increase sheet resistance as RF Power increases. After analyzing the surface of the deposited thin film, in the condition that RF Power was 250W and substrate temperature was $250^{\circ}C$, particles were measured to have a uniform and consistent thin film. P-type has good ohmic contact under all conditions and sheet resistance has been shown to increase as RF Power increases. As the RF Power grew, thickness increased and stabilized. PN junction thin film and NP junction thin film showed increased thickness and stabilized as sputtering time increased. As a result of thin film, conversion efficiency was at 0.2 when sputtering time was 10 minutes.

In vitro Biodegradability and Surface Properties of Block Copoly(ester-ether)s Consisting of Poly(L-lactide) and Polyether

  • Lee, Chan-Woo;Kim, Yoshiharu ura
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2003
  • Cell attachment and proliferation on the polymer films of triblock copolymer(ester-ether)s comprising po1y (L-1actide) (PLLA) and poly (oxyethylene-co-oxypropylene)(PN) were investigated using 3T3 fibroblasts. It was found that on the tissue culture polystyrene(TCPS) and the PLLA control film the cells could spread well while on the copolymer films the cells showed a rounded morphology without spreading and proliferated weakly. Especially, little cells proliferated on the films of copolymer having a LN composition of 20 wt%. While the water absorption of the copolymer films increased with increasing PN content, the contact angle against water of copolymer films immersed in aqueous medium was almost identical, being slightly lower than that of the PLLA film. These properties were compatible with the results of cell attachment. The in vitro hydrolysis of the films of triblock and multiblock type copolymers was faster with increasing PN content. The increased hydrolyzability, the flexibility and the decreased cell attachment suggested that these copolymers may have high potential as biodegradable materials for medical use.

High-Voltage 4H-SiC pn diode with Field Limiting Ring Termination (Field Limiting Ring termination을 이용한 고전압 4H-SiC pn 다이오드)

  • Song, G.H.;Bahng, W.;Kim, H.W.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.396-399
    • /
    • 2003
  • 4H-SiC un diodes with field limiting rings(FLRs) were fabricated and characterized. The dependences of reverse breakdown voltage on the number of FLRs, the distance between p-base main junction and first FLR, and activation temperatures, were investigated. Al and B ions were implanted and activated at high temperature to form p-base region and p+ region in the n-epilayer. We have obtained up to 1782V of reverse breakdown voltage in the un diode with two FLRs on loom thick epilayer. The differential on-resistances of the fabricated diode are $5.3m{\Omega}cm^2$ at $100A/cm^2$ and $2.7m{\Omega}cm^2$ at $1kA/cm^2$, respectively. All pn diodes with FLRs have higher avalanche breakdown voltages than that of diode without an FLR. Regardless of the activation temperature, the un diode with a FLR located 5um apart from main junction has the highest mean breakdown voltage around 1600V among the diodes with one ring. On the other hand, the pn diode with two rings showed different behavior with activation temperature. It reveals that high voltage SiC pn diodes with low on-resistance can be fabricated by using the FLR edge termination.

  • PDF

A Study of B-implanted n Type Si Epi Resistor for the Fabrication of Thermal Stable Pressure Sensor (열적 안정한 압력센서 제작을 위한 보론(B) 이온 주입 n형 Si 에피 전극 연구)

  • Choi, Kyeong-Keun;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this paper, we focus on optimization of a boron ($^{11}B$)-implanted n type Si epi substrate for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $125^{\circ}C$. The $^{11}B$-implantation on the N type-Si epi substrate formed isolation from the rest of the N-type Si by the depletion region of a PN junction. The TCR increased as the temperature of rapid thermal anneal (RTA) was increased at the temperature range from $900^{\circ}C$ to $1000^{\circ}C$ for the $p^+$ contact with implantation at dose of $1E16/cm^2$, but sheet resistance of this film was decreased. After the optimization of anneal process condition, the TCR of $1126.7{\pm}30.3$ (ppm/K) was obtained for the $p^-$ resistor-COB package chips contained $p^+$ contact with the implantation of $5E14/cm^2$. This shows the potential of the $^{11}B$-implanted n type Si epi substrate as a resistor for pressure sensor in thermal stable environment applications..

Element to Change the Bonding Structures of SnO2 Thin Films (SnO2 박막의 결정에 영향을 주는 요소)

  • Oh, Teresa
    • Industry Promotion Research
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • $SnO_2$ films were annealed in a vaccum atmosphere conditions to research the temperature dependency of current-voltage characteristics in according to the bonding structures. The $SnO_2$ film annealed in a vacuum became an amorphous structure but films annealed in an atmosphere condition had a crystal structure. The defects or depletion layer were formed by the electron-hole combination after annealing processes, and the electrical properties were changed depending on the crystal structure, binding energy and the variation of carriers. $SnO_2$ became more crystal-structural with increasing the annealing temperature, and the current increased at $SnO_2$ film annealed at $150^{\circ}C$ with Schottky current.

Gate-modulated SWCNT/SnO2 nanowire hetero-junction arrays on flexible polyimide substrate

  • Park, Jae-Hyeon;Bae, Min-Yeong;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.273-273
    • /
    • 2010
  • Recently, extensive research on hetero-junction arrays has been reported owing to its unique band gaps dissimilar to that of homo-junctions. These hetero-junction devices can be used in laser, solar cells, and various sensors. We report on the facile method to fabricate SWCNTs/SnO2 nanowires hetero-junction arrays on flexible polyimide substrate. Each SWCNT field effect transistor (FET) and SnO2 nanowire FET exhibits the purely p- and n-type charactersistics with ohmic contact properties. Such formed pn-junctions showed rectification behaviors reproducibly with a rectification ratio of ${\sim}3{\times}103$ at 1 V and ideality factors about 12. The pn-junctions also showed a good gate modulation behavior.

  • PDF

New Paradigm for Patients with Pulmonary Nodule Expecting Thoracoscopic Resection (흉강경수술이 예상되는 폐결절 환자에서의 새로운 방침)

  • 조민섭;심성보;왕영필;조건현;서종희;곽문섭;이선희;김학희;문석환
    • Journal of Chest Surgery
    • /
    • v.36 no.10
    • /
    • pp.748-753
    • /
    • 2003
  • Background: The pulmonary nodules (PN), when indicated, need thoracoscopic resection, especially in cases of non-diagnostic or technically infeasible PCNA (percutaneous needle aspiration). In the difficult situations of small or deeply seated PN, several techniques facilitating thoracoscopy have been used for detecting them. Our new protocol for managing PN was developed and prospectively reviewed. Material and Method: In the procedure of PCNA, we firstly placed the tip of the needle in the center of, or just in contact with PN under CT guidance, and loaded one or two segments of platinum radiomarker inside the needle after removing the stylet. Then, we forced the radiomarker to move to the tip of the needle by pushing the stylet. Finally, if the tip of the needle was not within PN, it was reoriented to the their center to obtain the sample for PCNA. Result: Between May 1999 and May 2000, radiomarkers were successfully placed in 28 PN of 26 patients, with the exception of one. In 18 (85%) of 21 nodules needing throacoscopy, intraoperative fluoroscopy was used to detect them or guide stapling resection during thoracoscopy. Conclusion: The advantages of this technique are that there is that there is no need for further localization for thoracoscopy even in cases of unsuccessful PCNA, and it was more effective in respect to both cost and time. Therefore, this strategy for PN expecting thoracoscopy will be helpful to patients and medical staff alike.

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.