• Title/Summary/Keyword: PLL Frequency Synthesizer

Search Result 142, Processing Time 0.029 seconds

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

The Performance Analysis of the DDFS to drive PLL (PLL을 구동하기 위한 DDFS의 성능분석)

  • 손종원;박창규;김수욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1283-1291
    • /
    • 2002
  • In this paper, the PLL driven by the DDFS is designed on the schematic using the Q-logic cell based library and is implemented using FPGA QL32 x16B. The measurement results of the frequency synthesizer switching speed were agreement with a register. The simulated results show that the clock delay was generated after eleven clock and if input is random, It has influence on output DA converter has to be very extensive. Therefore, the DDFS used noise shaper to drive PLL by regular interval for input state. Also the bandwidth of DA converter very extensive, the simulation shows that the variation of small input control word is better than the switching speed of PLL.

Design of a Wideband Frequency Synthesizer with Low Varactor Control Voltage (낮은 바렉터 제어 전압을 이용한 광대역 주파수 합성기 설계)

  • Won, Duck-Ho;Choi, Kwang-Seok;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.69-75
    • /
    • 2010
  • In this paper, with using the clapp type VCO(Voltage Controlled Osillator) configuration a wideband frequency synthesizer in UHF band is proposed. In order to design a wideband frequency synthesizer, the variation of phase in the negative resistance circuit as well as the load circuit was analyzed. Based on this result we propose a method to widen the operation range of the VCO. A frequency synthesizer using the proposed wideband VCO was designed and fabricated. It is shown that the synthesizer has the operating frequency range of 740~1,530 MHz by 0~5 V varactor tuning voltage, and it had the output power of 2~-6 dBm. Moreover, the phase noise measured as -77 dBc/Hz at 10 kHz offset, and as -108 dBc/Hz at 100 kHz offset from the oscillation frequency.

A Study of Frequency Synthesizer for DAB Applications (DAB 응용을 위한 주파수 합성기의 연구)

  • Kim, Yong-Woo;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • A frequency synthesizer for DAB applications is designed using $0.18{\mu}m$ CMOS process with 1.8V supply. NP-core type is chosen for VCO core to improve low power characteristic and symmetric characteristic of output waveform. VCO range is 1302.34 MHz - 1949.51 MHz using switchable capacitor bank and varactor bank. Varactor biases that improve varactor capacitance characteristics were minimized as two, $K_{vco}$(VCO gain) is maintained using technique of varactor bank switching. Intervals of $K_{vco}$ are maintained adding VCO frequency compensation logic. Each block of VCO and frequency synthesizer designed $0.18{\mu}m$ CMOS process with 1.8V supply is verified by Cadence Spectre, measured VCO consumes 9mA current, and is 39.8% tuning range, total power consumption of the frequency synthesizer is 18mW.

A Study on Improvement of the Channel Efficiency of FH-SS Transceiver Based on DDS Technique

  • Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A novel high channel efficiency transceiver based on a fast acquisition frequency synthesizer has been designed. The direct digital synthesis (DDS) technique is applied and a simple memory look-up table is incorporated to expedite channel acquisition. The technique simplifies the frequency control process in the transceiver and thus reduces the channel switching time. As a result, the channel efficiency is improved. The designed transceiver is ideal for frequency hopping mobile communication applications.

Performance Analysis of Modulator using Direct Digital Frequency Synthesizer of Initial Clock Accumulating Method (클록 초기치 누적방식의 직접 디지털 주파수 합성기를 이용한 변조기의 성능해석)

  • 최승덕;김경태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.128-133
    • /
    • 1998
  • This paper is study on performance analysis of modulator using direct digital frequency synthesizer of Initial Clock Accumulating Method. It has been generally used for PLL or digital frequency synthesizing method to be synthesizd randomly chosen frequency state. In order to improve disadvantage of two methods, we constructed modulator system using DDFS of Initial Clock Accumulating Method. We also confirmed the coherence frequency hopping state and possibility of phase control. The results obtained from the experiments are as follows; First, the synthesized output frequency is proportional to the sampling frequency, according to index, K. Second, the difference of the gain between the basic frequency and the harmonic frequencies was more than 50 [dB], that is, this means facts that is reduced the harmonic frequency factor. Third, coherence frequency hopping state is confirmed by PN code sequence. Here, we confirmed the proposed method cut switching time, this verify facts that is the best characteristic of the frequency hopping. We also verified the fact that the phase varies as the adder is operated set or reset.

  • PDF

A SIMULINK Modeling for a Fractional-N Frequency Synthesizer (SIMULINK를 이용한 Fractional-N 주파수합성기의 모델링 기법)

  • Kim, In-Jeong;Seo, Woo-Hyong;Ahn, Jin-Oh;Kim, Dae-Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.521-522
    • /
    • 2006
  • This paper presents behavioral models using SIMULINK and Verilog-a for a PLL based fractional-N frequency synthesizer. The SIMULINK modeling was built in the frequency-time mixed domain whereas the Verilog-a modeling was built purely in the time domain. The simulated results of the two models were verified to show the same performance within the error tolerance. This top-down design method can provide the readiness for the transistor-level design.

  • PDF

A Study on Design and Performance Evaluation of the Frequency Snthesizer Using the DDS in the Transmitter of the FFH/BFSK System (FFH/BFSK 시스템 송신부에서 DDS를 이용한 주파수합성기 설계 및 성능평가에 관한 연구)

  • 이두석;유형렬;정지원;조형래;김기문
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.161-166
    • /
    • 1999
  • The global trends of mobile communication system is moving toward digitizing, high-speed and large-capacity. Also, to utilize the limited frequency-resource efficiently, spread spectrum system is a mainstream. In this study we are concerning with the fast frequency-hopping system. Instead of the PLL with many problems such as phase-noise, we used the DDS is popular in these days minimizes the disadvantage of PLL. In the case the FFH system is designed using the PLL, it is difficult to be satisfied of the design conditions such as RF badwidth and the settling time of PLL, and it has limitation because of complex circuit by using the balanced modulator. In this study, we evaluated the performance in order to design the FFH system using the DDS. The system that has the improvement of error rate, 1Mhps hopping rate and 5MHz RF bandwidth is designed and evaluated.

  • PDF

Fractional-N Frequency Synthesis: Overview and Practical Aspects with FIR-Embedded Design

  • Rhee, Woogeun;Xu, Ni;Zhou, Bo;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.170-183
    • /
    • 2013
  • This paper gives an overview of fractional-N phase-locked loops (PLLs) with practical design perspectives focusing on a ${\Delta}{\Sigma}$ modulation technique and a finite-impulse response (FIR) filtering method. Spur generation and nonlinearity issues in the ${\Delta}{\Sigma}$ fractional-N PLLs are discussed with simulation and hardware results. High-order ${\Delta}{\Sigma}$ modulation with FIR-embedded filtering is considered for low noise frequency generation. Also, various architectures of finite-modulo fractional-N PLLs are reviewed for alternative low cost design, and the FIR filtering technique is shown to be useful for spur reduction in the finite-modulo fractional-N PLL design.

A Low Power Fast-Hopping Frequency Synthesizer Design for UWB Applications (UWB 응용을 위한 저전력 고속 스위칭 주파수 합성기의 설계)

  • Ahn, Tae-Won;Moon, Je-Cheol;Kim, Yong-Woo;Moon, Yong
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • A fast-hopping frequency synthesizer that reduces complexity and power consumption is presented for MB-OFDM UWB applications. The proposed architecture uses 3960 MHz LC VCO, 528 MHz ring oscillator, passive mixer and LC-tuned Q-enhancement BPF to generate Band Group 1 frequencies. The adjacent channel rejection ratio is less than -40 dBc for 3432 MHz and -H dBc for 4488 MHz. A fast switching SCL-tpre MUX is used to produce the required channel output signal and it takes less than 2.2 ns for band switching. The total power consumption is 47.9 mW from a 1.8 V supply.