• Title/Summary/Keyword: PLGA film

Search Result 22, Processing Time 0.022 seconds

Characterization of Dexamethasone-eluting PLGA Films Coated on Capsular Tension Ring to Prevent Posterior Capsule Opacification

  • Chang, Byung-Kon;Kim, Bo-Gyun;Kim, Young-Jae;Kang, Myung-Joo;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.425-430
    • /
    • 2008
  • The objectives of this study were to prepare PLGA film onto the surface of the capsular tension ring (CTR) for controlled drug release and investigate the influence of plasticizers, the test drug and measurement conditions on flexibility of the film. Film solutions were prepared by dissolving PLGA, plasticizer (triethyl citrate, TEC or polyethylene glycol, PEG), test drug (dexamethasone) in ethyl acetate then films were prepared by spray coating and evaporation method. Then, the flexibility of PLGA film was determined by elongation test. The addition of plasticizer, PEG or TEC to PLGA copolymer caused a depression of glass transition temperature ($T_g$) and the elasticity of PLGA films increased. The addition of dexamethasone to the PLGA/TEC matrix decreased the flexibility of film. Dimensional factors of the PLGA films such as width and thickness were significantly influenced on flexibility of films and film length and elongation speed had no considerable influence on elongation of films. In this study, sufficiently flexible and stable PLGA films capable of being coated onto CTR could be prepared. This PLGA films can be used as a platform for local drug delivery.

Effect of Inflammatory Responses to PLGA Films Incorporated Hesperidin: In vitro and In vivo Results (PLGA/헤스페리딘 함량별 필름에서 염증 완화 효과: In vitro, In vivo 결과)

  • Song, Jeong Eun;Shim, Cho Rok;Lee, Yujung;Ko, Hyun Ah;Yoon, Hyeon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.323-331
    • /
    • 2013
  • Hesperidin (Hes) has known to having some functions like protection of blood circulatory system, anti-tumor effect, antioxidant effect and anti-inflammatory effect. The goal of this study is to demonstrate the relationship between Hes and inflammatory through in vitro and in vivo studies using poly(lactic-co-glycolic acid) (PLGA) film including Hes as a tissue engineered scaffold. To confirm the proliferation of cells on fabricated scaffold, cells (RAW 264.7 and NIH/3T3) were seeded on PLGA/Hes film then analyzed with MTT and SEM at 1 and 3 days after seeding. The results from ELISA, RT-PCR, and FACS for anti-oxident and anti-inflammatory effect showed that inflammatory response of PLGA/Hes film decreased more than that of PLGA film. Also, in vivo result confirmed that inflammatory response by implanted PLGA/Hes film decreased more comparing with PLGA film. This is because of anti-inflammatory effect of Hes reducing induced inflammatory cell and accumulation of fibrous capsule. The results showed that PLGA/Hes film's capacity on reducing inflammatory is better than PLGA film because of Hes.

Enhancement of Thermomechanical Properties of Poly(D, L-lactic-co-glycolic acid) and Graphene Oxide Composite Films for Scaffolds

  • Yoon, Ok-Ja;Sohn, Il-Yung;Kim, Duck-Jin;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.548-548
    • /
    • 2012
  • Thermomechanical and surface chemical properties of composite films of poly(D, L-lactic-co-glycolic acid) (PLGA) were significantly improved by the addition of graphene oxide (GO) nanosheets as nanoscale fillers to the PLGA polymer matrix. Enhanced thermomechanical properties of the PLGA/GO (2 wt.%) composite film, including an increase in the crystallization temperature and reduction in the weight loss, were observed. The tensile modulus of a composite film with increased GO fraction was presumably enhanced due to strong chemical bonding between the GO nanosheets and PLGA matrix. Enhanced hydrophilicity of the composite film due to embedded GO nanosheets also improved the biocompatibility of the composite film. Improved thermomechanical properties and biocompatibility of the PLGA composite films embedded with GO nanosheets may be applicable to biomedical applications such as scaffolds.

  • PDF

Adhesion and Proliferation Behavior of Retinal Pigment Epithelial Cells on Hesperidin/PLGA Films (헤스페리딘/PLGA 필름에서 망막색소상피세포의 부착과 증식거동)

  • Lee, So Jin;Kang, Su Ji;Kim, Hye Yun;Lee, Jung Hwan;Kim, Eun Young;Kwon, Soon Yong;Chung, Jin Wha;Joo, Choun-Ki;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • Retinal pigment epithelium (RPE) plays an important role in maintaining the visual function and the degeneration of the RPE causes several retinal degeneration disease. In order to fabricate the suitable carrier for RPE transplantation, the hybrid poly(lactide-co-glycolide) (PLGA) film with hesperidin was prepared. Hesperidin has an anti-inflammatory and antioxidant characteristics. ARPE-19 was seeded on hesperidin/PLGA film and then, cell proliferation was determined by the MTT assay, and cell adhesion and cell morphology were confirmed by SEM. Also, RT-PCR was performed to confirm the expression of the specific genes, and AEC immunohistochemical staining was performed to determine the expression of RPE65. As a result, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells were more excellent on hesperidin/PLGA film than PLGA film, thereby we were able to confirm the potential applications of hesperidin/PLGA film as tissue engineering carrier for regeneration of retina.

Effects of Laminated Cylindrical Scaffolds of Keratin/Poly(lactic-co-glycolic acid) Hybrid Film on Annulus Fibrous Tissue Regeneration (케라틴/PLGA 복합체 필름의 적층 원통형 지지체가 섬유륜 재생에 미치는 영향)

  • Lee, Seon-Kyoung;Hong, Hee-Kyung;Kim, Su-Jin;Kim, Yong-Ki;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.474-479
    • /
    • 2010
  • We developed laminated cylindrical scaffolds composed of poly(lactide-co-glycolide)(PLGA) and keratin, and investigated their potential for tissue engineering and disk regeneration. The scaffold was designed to have two parts, i.e. inner cylinder and outer disk, to mimic a natural disk. The outer disk was composed of PLGA and the inner cylinder was prepared using PLGA film or PLGA/keratin hybrid film. In this study, we investigated the effects of keratin on the growth and proliferation of annulus fibrous(AF) cells in the cylindrical scaffolds. Scaffolds containing PLGA/keratin films showed a significantly higher cell proliferation and expression of collagen I and II than the counterpart with PLGA films. Keratin containing scaffolds also exhibited an excellent mechanical strength, demonstrating that keratin influences the proliferation of annulus fibrous cells. The results provide valuable information on PLGA/keratin films for tissue engineered disk regeneration.

Controlled Release of Nerve Growth Factor from Sandwiched Poly(L-lactide-co-glycolide) Films for the Application in Neural Tissue Engineering

  • Gilson Khang;Jeon, Eun-Kyung;John M. Rhee;Lee, Ilwoo;Lee, Sang-Jin;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.334-340
    • /
    • 2003
  • In order to fabricate new sustained delivery device of nerve growth factor (NGF), we developed NGF-loaded biodegradable poly(L-lactide-co-glycolide) (PLGA, the mole ratio of lactide to glycolide 75:25, molecular weight: 83,000 and 43,000 g/mole, respectively) film by novel and simple sandwich solvent casting method for the possibility of the application of neural tissue engineering. PLGA was copolymerized by direct condensation reaction and the molecular weight was controlled by reaction time. Released behavior of NGF from NGF-loaded films was characterized by enzyme linked immunosorbent assay (ELISA) and degradation characteristics were observed by scanning electron microscopy (SEM) and gel permeation chromatography (GPC). The bioactivity of released NGF was identified using a rat pheochromocytoma (PC-12) cell based bioassay. The release of NGF from the NGF-loaded PLGA films was prolonged over 35 days with zero-order rate of 0.5-0.8 ng NGF/day without initial burst and could be controlled by the variations of molecular weight and NGF loading amount. After 7 days NGF released in phosphate buffered saline and PC-12 cell cultured on the NGF-loaded PLGA film for 3 days. The released NGF stimulated neurite sprouting in cultured PC-12 cells, that is to say, the remained NGF in the NGF/PLGA film at 37 $^{\circ}C$ for 7 days was still bioactive. This study suggested that NGF-loaded PLGA sandwich film is released the desired period in delivery system and useful neuronal growth culture as nerve contact guidance tube for the application of neural tissue engineering.

Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells (2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향)

  • Ko, Youn-Kyung;Jeong, Jae-Soo;Kim, Soon-Hee;Lim, Ji-Ye;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • Because demineralized bone particle (DBP) contains various bioactive molecules such as cytokines, it is widely used biomaterials in the field of tissue engineering. In this study, we investigated the effect of 2-dimensional DBP/PLGA hybrid films on adhesion, proliferation and phenotype maintenance of intervertebral disc cells. PLGA films incorporated with different amount (0, 10, 20, 40 and 80 wt%) of DBP were prepared by the solvent evaporation method and characterized by scanning election microscopy (SEM). PLGA film has a flat and smooth surface. According to the increase of content of DBP, the surface of DBP/PLGA film exhibited few agglomerates and increased the roughness of the surface. Annulus fibrosus (AF) and nucleus pulposus (NP) cells were cultured on PLGA and DBP/PLGA film surface, and then examined the cell adhesion and proliferation by the cell count and SEM observation. The result of cell count and SEM observation revealed that 10 and 20% DBP in DBP/PLGA films were superior to adhesion and proliferation of both AF and NP cells. We confirmed that specific gene expression of disc cells on DBP/PLGA film based on the cell count result. Disc cells seeded on 20% DBP/PLGA film expressed the gene of type I and II collagen continuously. Therefore, pertinent content of biomaterials could provide more appropriate condition on adhesion and proliferation of cell. And this results may be used as a basic data for the intervertebral disc regeneration using tissue engineering.

Effect of PLGA/Silk Fibroin Hybrid Film on Attachment and Proliferation of Schwann Cells (실크피브로인을 함유한 PLGA 하이브리드 필름이 슈반세포의 부착과 증식에 미치는 영향)

  • Kim, Hye-Lin;Yoo, Han-Na;Park, Hyun-Jin;Kim, Yong-Gi;Lee, Dong-Won;Kang, Young-Sun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with acceptable mechanical strength and well-controlled degradation rate. Also, it can be easily fabricated into many shapes. Silk fibroin contains powerful bioactive molecules. We fabricated natural/synthetic hybrid films using 0, 10, 20, 40 and 80 wt% of silk fibroin. Schwann cells (SCs) were seeded on PLGA/silk fibroin hybrid films and confirmed the effects of adhesion and proliferation on SCs according to the content of silk fibroin. In this study, we confirmed PLGA/silk fibroin hybrid film containing 40% and 80% of silk fibroin interrupted adhesion and proliferation of SCs. Films containing 10% and 20% of silk, however, provided suitable environment for growth and proliferation of SCs. These results suggest that silk fibroin provides suitables surface to neural cells and its proper content provides proper culture conditions to improve cell adhesion and proliferation.

Biodegradable PLGA Polymer Coating on Biomedical Metal Implants Using Electrospraying (전기분사를 이용한 의료용 금속 임플란트의 생분해성 PLGA 고분자 코팅)

  • Cho, Seong-Bae;Park, Chul-Ho;Park, Kwi-Deok;Chung, Dong-Jun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.620-624
    • /
    • 2009
  • Biomedical metal implants have been used clinically for replacement, restoration, or improvement of injury bodies based on high mechanical properties, but it has some risks such as the inflammatory, late thrombosis, or restenosis due to the low biocompatibility and toxicity. In various techniques of surface treatment developed to preserve these drawbacks, this study examined the electrospray coating technology with biodegradable poly (lactic-co-glycoic acid) (PLGA) on metal surface. Based on fundamental examination of electrospraying and solution parameters, the surface morphology of coated film was closely related to the boiling point of solvent, in-flight distance, and droplet size. The thickness of polymer film was linearly proportional to the emerged volume. This result exhibits that the polymeric droplets were continuously deposited on the polymer film. Therefore, the electrospray coating technology might be applied into the fabrication of single/multi-layered polymer film in nano-/micro-thickness and the control of the topology for biomedical metal implants including stents.

Effects of Attachment and Proliferation of Retinal Pigment Epithelial Cells on Silk/PLGA Film (실크/PLGA 필름에서 실크 함량이 망막색소 상피세포의 부착 및 증식 거동에 미치는 영향)

  • Jo, Eun-Hye;Kim, Soo-Jin;Cho, Su-Jin;Lee, Ga-Young;Kim, On-You;Lee, Eun-Yong;Cho, Won-Hyung;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 2011
  • Biomaterials for retinal tissue engineering must demonstrate several critical features for potential utility, including mechanical integrity, biocompatibility, and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. We prepared natural/synthetic hybrid silk/PLGA films using 0, 10, 20, 40, and 80 wt% of silk by a solvent evaporation method. MIT assay was used to confirm the number of cells attached on film at 1, 2, and 3 days, respectively. The morphology of cellular adhesion on films was also confirmed by scanning electron microscope (SEM). RT-PCR was conducted to confrrm mRNA expression of retinal pigment epithelitun (RPE) using RPE65 as a RPEs marker and the expression of cytokeratin were determined by immunofluorescence staining. We confirmed that the silk/PLGA film of 20~40 wt% silk was superior for the adhesion and proliferation of RPEs.