Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells

2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향

  • Ko, Youn-Kyung (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Jeong, Jae-Soo (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Kim, Soon-Hee (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Lim, Ji-Ye (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Rhee, John-M. (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Kim, Moon-Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee, Hai-Bang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Khang, Gil-Son (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University)
  • 고연경 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 정재수 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 김순희 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 임지예 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 이종문 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀) ;
  • 강길선 (전북대학교 BK-21 고분자 BIN융합연구팀)
  • Published : 2008.03.31

Abstract

Because demineralized bone particle (DBP) contains various bioactive molecules such as cytokines, it is widely used biomaterials in the field of tissue engineering. In this study, we investigated the effect of 2-dimensional DBP/PLGA hybrid films on adhesion, proliferation and phenotype maintenance of intervertebral disc cells. PLGA films incorporated with different amount (0, 10, 20, 40 and 80 wt%) of DBP were prepared by the solvent evaporation method and characterized by scanning election microscopy (SEM). PLGA film has a flat and smooth surface. According to the increase of content of DBP, the surface of DBP/PLGA film exhibited few agglomerates and increased the roughness of the surface. Annulus fibrosus (AF) and nucleus pulposus (NP) cells were cultured on PLGA and DBP/PLGA film surface, and then examined the cell adhesion and proliferation by the cell count and SEM observation. The result of cell count and SEM observation revealed that 10 and 20% DBP in DBP/PLGA films were superior to adhesion and proliferation of both AF and NP cells. We confirmed that specific gene expression of disc cells on DBP/PLGA film based on the cell count result. Disc cells seeded on 20% DBP/PLGA film expressed the gene of type I and II collagen continuously. Therefore, pertinent content of biomaterials could provide more appropriate condition on adhesion and proliferation of cell. And this results may be used as a basic data for the intervertebral disc regeneration using tissue engineering.

탈미네랄화된 골분(DBP)은 사이토카인과 같은 다양한 생리활성분자를 가지기 때문에 조직공학분야에서 널리 사용되는 생체재료이다. 본 연구에서는 DBP를 함유한 2차원적 DBP/PLGA 필름이 추간판디스크 세포의 부착, 증식 및 표현형유지에 미치는 영향에 대해 연구하였다. DBP 함량에 따른 DBP/PLGA 필름은 용매증발법으로 제조하였으며 제조된 PLGA 및 DBF/PLGA 필름은 시차주사현미경을 통해 표면을 분석하였다. PLCA 필름은 매끄러운 표면을 가지며, DBF의 함량이 증가할수록 DBP/PLGA 필름의 표면은 거침도가 증가하는 것을 확인하였다. 섬유륜(AF) 및 수핵(NP)세포를 PLGA 및 DBP/PLCA 필름 표면에 파종하여 배양한 후, 세포의 계수 및 SEM 관찰을 통하여 이들의 부착과 증식을 평가하였다. 세포 계수와 SEM 관찰 결과, DBP의 함량이 10 및 20%인 DBP/PLGA 필름에서 높은 초기부착도 및 증식률을 보였다. 세포 계수 결과를 바탕으로 RT-PCR을 통하여 DBF 10%와 20%의 DBP/PLGA 필름에서의 디스크 세포의 특이적 유전자 발현확인 결과, DBF의 함량이 20%인 DBP/PLCA 필름에서 세포의 표현형이 유지되며 지속적인 세포외기질이 발현될 것으로 예상되었다. 따라서 적절한 천연재료의 함량이 세포의 부착과 증식에 더욱 적합하며 이는 조직공학적 디스크 재생의 기초 자료로 사용될 것으로 사료된다.

Keywords

References

  1. H. G. Gruber, T. L. Johnson, K. Lesile, J. A. Ingram, D. Martin, G. Hoelscher, D. Banks, L. Phieffer, G. Coldham, and E. N. Hanley, Spine, 27, 1626 (2002) https://doi.org/10.1097/00007632-200208010-00007
  2. Y. K. Ko, S. H. Kim, H. J. Ha, M. S. Kim, C. W. Han, Y. Son, J. M. Rhee, H. B. Lee, and G. Khang, Tissue Eng. Regen. Med., 4, 67 (2007)
  3. B. A. Maldonado and T. R. Oegema, J. Orthop. Res., 10, 677 (1992) https://doi.org/10.1002/jor.1100100510
  4. K. Chiba, G. B. Andersson, K. Masuda, and E. J. Thonar, Spine, 22, 2885 (1997) https://doi.org/10.1097/00007632-199712150-00011
  5. H. E. Gruber, E. C. Fisher, B. Desai, A. A. Stasky, G. Hoelscher, and E. N. Hanley, Exp. Cell Res., 235, 13 (1997) https://doi.org/10.1006/excr.1997.3647
  6. H. Wilda and J. E. Gough, Biomaterials, 27, 5220 (2006) https://doi.org/10.1016/j.biomaterials.2006.06.008
  7. W. B. Tsai, C. H. Chen, J. F. Chen, and K. Y. Chang, J. Mater. Sci. Med., 17, 337 (2006) https://doi.org/10.1007/s10856-006-8234-x
  8. S. J. Lee, G. Khang, J. H. Lee, Y. M. Lee, and H. B. Lee, Polymer(Korea), 24, 877 (2000)
  9. K. S. Park, S. M. Kim, M. S. Kim, I. Lee, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Korea), 30, 455 (2006)
  10. S. L. Ishaug-Riley, L. E. Okun, G. Prado, M. A. Applegate, and A. Ratcliffe, Biomaterials, 20, 2245 (1999) https://doi.org/10.1016/S0142-9612(99)00155-6
  11. K. C. Dee, T. T. Anderson, and R. Bizios, J. Biomed. Mater. Res., 30, 371 (1998)
  12. M. Lampin, L. C. Warocquier-Clerout, M. Degrange, and M. F. Sigot-Luizard, J. Biomed. Mater. Res., 36, 99 (1997) https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E
  13. X. S. Wu, in Encyclopedic Handbook of Biomaterials and Bioengineering, Marcel Dekker, New York, vol. 1, p. 1015 (1995)
  14. A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Biomaterials, 15, 55 (1994) https://doi.org/10.1016/0142-9612(94)90197-X
  15. S. Sagnella, E. Anderson, N. Sanabria, R. E. Marchant, and K. Kottke-Marchant, Tissue Eng., 11, 226 (2005) https://doi.org/10.1089/ten.2005.11.226
  16. Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 20, 2185 (1999) https://doi.org/10.1016/S0142-9612(99)00123-4
  17. G. Khang, M. S. Kim, B. H. Min, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 376 (2006)
  18. S. M. Kim, S. H. Kim, C. M. Kim, A. Y. Oh, M. S. Kim, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 4, 179 (2007)
  19. J. W. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004)
  20. J. W. Jang, K. S. Park, S. H. Kim, J. S. Park, M. S. Kim, C. W. Han, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 34 (2005)
  21. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007)
  22. M. R. Urist, Science, 150, 893 (1981) https://doi.org/10.1126/science.150.3698.893
  23. B. S. Choi, S. H. Kim, S. J. Yun, H. J. Ha, M. S. Kim, Y. I. Yang, Y. Son, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 295 (2006)
  24. H. J. Ha, S. H. Kim, S. J. Yoon, Y. K. Ko, E. K. Lee, Y. Son, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 3, 416 (2006)
  25. H. Kranz, N. Ubrich, P. Maincent, and R. Bodmeier, J. Pharm. Sci., 89, 1558 (2000) https://doi.org/10.1002/1520-6017(200012)89:12<1558::AID-JPS6>3.0.CO;2-8
  26. W. L. Webber, F. Lago, C. Thanos, and E. Mathiowitz, J. Biomed. Mater. Res., 41, 18 (1998) https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<18::AID-JBM3>3.0.CO;2-T
  27. S. H. Kim, K. S. Park, B. C. Choi, H. J. Ha, J. M. Rhee, M. S. Kim, Y. S. Yang, H. B. Lee, and G. Khang, Adv. Exper. Med. Biology., 585, 209 (2006)
  28. J. C. Gan, P. Ducheyne, E. J. Vresilovic, and I. M. Shapiro, Clin. Orthop. Relat. Res., 411, 315 (2003) https://doi.org/10.1097/01.blo.0000063797.98363.d3