Browse > Article

Effect of PLGA/Silk Fibroin Hybrid Film on Attachment and Proliferation of Schwann Cells  

Kim, Hye-Lin (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
Yoo, Han-Na (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
Park, Hyun-Jin (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
Kim, Yong-Gi (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
Lee, Dong-Won (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
Kang, Young-Sun (Institute of Biomedical Science and Technology, Konkuk University)
Khang, Gil-Son (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
Publication Information
Polymer(Korea) / v.35, no.1, 2011 , pp. 7-12 More about this Journal
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with acceptable mechanical strength and well-controlled degradation rate. Also, it can be easily fabricated into many shapes. Silk fibroin contains powerful bioactive molecules. We fabricated natural/synthetic hybrid films using 0, 10, 20, 40 and 80 wt% of silk fibroin. Schwann cells (SCs) were seeded on PLGA/silk fibroin hybrid films and confirmed the effects of adhesion and proliferation on SCs according to the content of silk fibroin. In this study, we confirmed PLGA/silk fibroin hybrid film containing 40% and 80% of silk fibroin interrupted adhesion and proliferation of SCs. Films containing 10% and 20% of silk, however, provided suitable environment for growth and proliferation of SCs. These results suggest that silk fibroin provides suitables surface to neural cells and its proper content provides proper culture conditions to improve cell adhesion and proliferation.
Keywords
silk fibroin; poly (lactic-co-glycolic acid) (PLGA); Schwann cell; hybrid film; tissue engineering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. Garcia-Fuentesa, A. J. Meinela, M. Hilbeb, L. Meinela, and H. P. Merkle, Biomaterials, 30, 28 (2009).
2 E. J. Kim, J. H. Song, and M. S. Kim, Tissue Eng. Regen. Med., 1, 41 (2004).
3 C. Cheng, C. A. Webber, J. Wang, Y. Xu, J. A. Martinez, W. Q. Liu, D. McDonald, G. F. Guo, M. D. Nguyen, and D. W. Zochodne, Exp. Neurol., 212, 358 (2008).   DOI   ScienceOn
4 G. Khang, S. K. Kim, and K. D. Hong, Tissue Eng. Regen. Med., 1, 136 (2004).
5 J. Caddick, P. J. Kingham, and N. J. Gardiner, Glia, 54, 840 (2006).   DOI   ScienceOn
6 B. Movaghara, T. Tiraihia, and S. A. Mesbah-Naminb, Cell Biol. Int., 30, 569 (2006).   DOI   ScienceOn
7 N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995).   DOI   ScienceOn
8 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).   DOI   ScienceOn
9 J. Chen, G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, and V. Volloch, J. Biomed. Mater. Res., 67, 559 (2003).
10 R. Jandial, I. Singec, V. J. Duenas, A. L. Ho, M. L. Levy, and E. Y. Snyder, Inter. Congress Series, 1302, 154 (2007).   DOI
11 C. D. Mills, A. J. Allchorne, and R. S. Griffin, Mol. Cell. Neurosci., 36, 185 (2007).   DOI   ScienceOn
12 M. Nissinen, H. Honkanen, O. Lahti, M. Kangas, J. Peltonen, and S. Peltonen, Mol. Cell. Neurosci., 37, 568 (2008).   DOI   ScienceOn
13 T. Imaizumi, K. L. Lankford, and J. D. Kocsis, Brain Res., 854, 70 (2000).   DOI
14 N. Zhang, H. Yan, and X. Wen, Brain Res. Rev., 49, 48 (2005).   DOI   ScienceOn
15 G. H. Doherty, C. Oldreive, and J. Harvey, Neurosci., 154, 1297 (2008).   DOI   ScienceOn
16 D. P. Yang, D. P. Zhang, and K. S. Mak, Mol. Cell. Neurosci., 38, 80 (2008).   DOI   ScienceOn
17 L. B. Dahlin, Current Orthopaedics, 22, 9 (2008).   DOI   ScienceOn
18 A. Y. Oh, S. H. Kim, S. J. Lee, J. Yoo, V. D. Mark, J. M. Rlee, and G. Khang, Polymer(Korea), 32, 403 (2008).
19 C. Li, C. Vepari, H. Jina, H. J. Kim, and D. L. Kaplan, Biomaterials, 27, 3115 (2006).   DOI   ScienceOn
20 Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 20, 2185 (1999).   DOI   ScienceOn
21 G. S. Khang, M. S. Kim, B. H. Min, I. W. Lee, J. M. Rlee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 376 (2006).
22 T. K. Morrissey, N. K. Leitman, and R. P. Bunge, J. Neurosci., 11, 2433 (1991).
23 H. Liu, H. Fan, Y. Wang, S. L. Toh, and J. C. Goh, Biomaterials, 29, 662 (2008).   DOI   ScienceOn
24 K. S. Park, S. M. Kim, M. S. Kim, I. W. Lee, J. Lee, H. B. Lee, and G. Khang, Polymer(Korea), 30, 445 (2006).
25 G. Khang, M. S. Kim, and S. H. Cho, Tissue Eng. Regen. Med., 1, 9 (2004).
26 J. Palace, J. Neurol. Sci., 265, 21 (2008).   DOI
27 G. Khang, E. K. Jeon, and J. M. Rhee, Macromol. Res., 11, 334 (2003).   DOI   ScienceOn
28 P. J. Kingham, D. F. Kalbermatten, D. Mahay, S. J. Armstrong, M. Wiberg, and G. Terenghi, Exp. Neurol., 207, 267 (2007).   DOI   ScienceOn
29 J. W. Jang, K. S. Park, and S. H. Kim, Tissue Eng. Regen. Med., 2, 34 (2005).
30 G. Khang, J. H. Jeon, and J. C. Cho, Polymer(Korea), 23, 471 (1999).
31 S. Sagnella, E. Anderson, N. Sanabria, R. E. Marchant, and K. Marchant, Tissue Eng., 11, 226 (2005).   DOI   ScienceOn
32 H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003).   DOI   ScienceOn
33 H. J. Jin, S. V. Fridrikh, and G. C. Rutledge, Biomacromolecules, 3, 1233 (2002).   DOI   ScienceOn
34 L. Meinel, O. Betz, R. Fajardo, S. Hofmann, and A. Nazarian, Bone, 39, 4 (2006).
35 L. Uebersaxa, M. Mattottia, and M. Papaloizosb, Biomaterials, 28, 30 (2007).