• Title/Summary/Keyword: PLASMA ETCHING

Search Result 1,038, Processing Time 0.046 seconds

Effect of O2 Plasma Treatment on the Surface Morphology and Characteristics of Poly (imide) to Develop Self-cleaning Industrial Materials (자기세정산업용 소재 개발을 위한 O2 플라즈마 처리가 Poly(imide) 필름의 표면 형태 및 특성에 미치는 영향)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.10
    • /
    • pp.1117-1124
    • /
    • 2012
  • This study was a preliminary study to investigate the influence of surface morphology and characteristics on the self-cleaning of substrates. PI film was treated by $O_2$ plasma to modify the surface; in addition, AFM and Fe-SEM were employed to examine the morphological changes induced on a PI film treated by $O_2$ plasma and surface energies calculated from measured contact angles between several solutions and PI film based on the geometric mean and a Lewis acid base method. The surface roughness of PI film treated by $O_2$ plasma increased with the duration of the $O_2$ plasma on PI film due to the increased surface etching. The contact angle of film treated by $O_2$ plasma decreased with the increased treatment time in water and surfactant solution; in addition, the surface energy increased with the increased treatment times largely attributed to the increased portion on the polar surface energy of PI film. The coefficient of the correlation between surface roughness and surface polarity such as contact angle and surface energy was below 0.35; however, it was over 0.99 for the contact angle and surface energy.

Plasma Charge Damage on Wafer Edge Transistor in Dry Etch Process (Dry Etch 공정에 의한 Wafer Edge Plasma Damage 개선 연구)

  • Han, Won-Man;Kim, Jae-Pil;Ru, Tae-Kwan;Kim, Chung-Howan;Bae, Kyong-Sung;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.109-110
    • /
    • 2007
  • Plasma etching process에서 magnetic field 영향에 관한 연구이다. High level dry etch process를 위해서는 high density plasma(HDP)가 요구된다. HDP를 위해서 MERIE(Magnetical enhancement reactive ion etcher) type의 설비가 사용되며 process chamber side에 4개의 magnetic coil을 사용한다. 이런 magnetic factor가 특히 wafer edge부문에 plasma charging에 의한 damage를 유발시키고 이로 인해 device Vth(Threshold voltage)가 shift 되면서 제품의 program 동작 문제의 원인이 되는 것을 발견하였다. 이번 연구에서 magnetic field와 관련된 plasma charge damage를 확인하고 damage free한 공정조건을 확보하게 되었다.

  • PDF

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs) (과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향)

  • Park, Hyun-Woo;Cha, Woo Byoung;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

Application of $CF_{4}$ plasma etching to $Ta_{0.5}Al_{0.5}$ alloy thin film ($CF_{4}$ 기체를 이용한 $Ta_{0.5}Al_{0.5}$ 합금 박막의 플라즈마 식각)

  • 신승호;장재은;나경원;이우용;김성진;정용선;전형탁;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.60-63
    • /
    • 1999
  • Application of reactive ion etching (RIE) technique to Ta-Al alloy thin film with a thickness of $1000{\AA}$ was studied. $CF_{4}$ gas could be used effectively to etch the Ta-Al alloy thin film. The etching rate in the thin film with Ta content of 50 mol% was about $67{\AA}/min$. NO selectivity between the Ta-Al alloy film and $SiO_{2}$ film was observed during the etching using the $CF_{4}$ gas. The etching rate of the $SiO_{2}$ layer was 12 times faster than that of the Ta-Al alloy thin film. It was also observed that photoresist of AZ5214 was more useful than Shiepley 1400-27 in RIE with the $CF_{4}$ gas.

  • PDF

Microfabrication of Submicron-size Hole on the Silicon Substrate using ICP etching

  • Lee, J.W.;Kim, J.W.;Jung, M.Y.;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.79-79
    • /
    • 1999
  • The varous techniques for fabrication of si or metal tip as a field emission electron source have been reported due to great potential capabilities of flat panel display application. In this report, 240nm thermal oxide was initially grown at the p-type (100) (5-25 ohm-cm) 4 inch Si wafer and 310nm Si3N4 thin layer was deposited using low pressure chemical vapor deposition technique(LPCVD). The 2 micron size dot array was photolithographically patterned. The KOH anisotropic etching of the silicon substrate was utilized to provide V-groove formation. After formation of the V-groove shape, dry oxidation at 100$0^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have a etch-mask for dry etching. The thicknesses of the grown oxides on the (111) surface and on the (100) etch stop surface were found to be ~330nm and ~90nm, respectively. The reactive ion etching by 100 watt, 9 mtorr, 40 sccm Cl2 feed gas using inductively coupled plasma (ICP) system was performed in order to etch ~90nm SiO layer on the bottom of the etch stop and to etch the Si layer on the bottom. The 300 watt RF power was connected to the substrate in order to supply ~(-500)eV. The negative ion energy would enhance the directional anisotropic etching of the Cl2 RIE. After etching, remaining thickness of the oxide on the (111) was measured to be ~130nm by scanning electron microscopy.

  • PDF

RIE에서 $C_3F_6$ 가스를 이용한 $Si_3N_4$ 식각공정 개발

  • Jeon, Seong-Chan;Gong, Dae-Yeong;Jeong, Dong-Geon;Choe, Ho-Yun;Kim, Bong-Hwan;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.328-329
    • /
    • 2012
  • $SF_6$ gas는 반도체 및 디스플레이 제조공정 중 Dry etch과정에서 널리 사용되는 gas로 자연적으로 존재하는 것이 아닌 사용 목적에 맞춰 인위적으로 제조된 gas이다. 디스플레이 산업에서 $SF_6$ gas가 사용되는 Dry etch 공정은 주로 ${\alpha}$-Si, $Si_3N_4$ 등 Si계열의 박막을 etch하는데 사용된다. 이러한 Si 계열의 박막을 식각하기 위해서는 fluorine, Chlorine 등이 사용된다. fluorine계열의 gas로는 $SF_6$ gas가 대표적이다. 하지만 $SF_6$ gas는 대표적인 온실가스로 지구 온난화의 주범으로 주목받고 있다. 세계적으로 온실가스의 규제에 대한 움직임이 활발하고, 대한민국은 2020년까지 온실가스 감축목표를 '배출전망치(BAU)대비 30% 감축으로' 발표하였다. 따라서 디스플레이 및 반도체 공정에는 GWP (Global warming Potential)에 적용 가능한 대체 가스의 연구가 필요한 상황이다. 온실가스인 $SF_6$를 대체하기 위한 방법으로 GWP가 낮은 $C_3F_6$가스를 이용하여 $Si_3N_4$를 Dry etching 방법인 RIE (Reactive Ion Etching)공정을 한 후 배출되는 가스를 측정하였다. 4인치 P-type 웨이퍼 위에 PECVD (Plasma Enhanced Chemical Vapor Deposition)장비를 이용하여 $Si_3N_4$를 200 nm 증착하였고, Photolithography공정을 통해 Patterning을 한 후 RIE공정을 수행하였다. RIE는 Power : 300 W, Flow rate : 30 sccm, Time : 15 min, Temperature : $15^{\circ}C$, Pressure : Open과 같은 조건으로 공정을 수행하였다. 그리고 SEM (Scanning Electron Microscope)장비를 이용하여 Etching된 단면을 관찰하여 단차를 확인하였다. 또한 Etching 전후 배출가스를 포집하여 GC-MS (Gas Chromatograph-Mass Spectrophotometry)를 측정 및 비교하였다. Etching 전의 경우에는 $N_2$, $O_2$ 등의 가스가 검출되었고, $C_3F_6$ 가스를 이용해 etching 한 후의 경우에는 $C_3F_6$ 계열의 가스가 검출되었다.

  • PDF

Fabrication of Large Area Transmission Electro-Absorption Modulator with High Uniformity Backside Etching

  • Lee, Soo Kyung;Na, Byung Hoon;Choi, Hee Ju;Ju, Gun Wu;Jeon, Jin Myeong;Cho, Yong Chul;Park, Yong Hwa;Park, Chang Young;Lee, Yong Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.220-220
    • /
    • 2013
  • Surface-normal transmission electro-absorption modulator (EAM) are attractive for high-definition (HD) three-dimensional (3D) imaging application due to its features such as small system volume and simple epitaxial structure [1,2]. However, EAM in order to be used for HD 3D imaging system requires uniform modulation performance over large area. To achieve highly uniform modulation performance of EAM at the operating wavelength of 850 nm, it is extremely important to remove the GaAs substrate over large area since GaAs material has high absorption coefficient below 870 nm which corresponds to band-edge energy of GaAs (1.424 eV). In this study, we propose and experimentally demonstrate a transmission EAM in which highly selective backside etching methods which include lapping, dry etching and wet etching is carried out to remove the GaAs substrate for achieving highly uniform modulation performance. First, lapping process on GaAs substrate was carried out for different lapping speeds (5 rpm, 7 rpm, 10 rpm) and the thickness was measured over different areas of surface. For a lapping speed of 5 rpm, a highly uniform surface over a large area ($2{\times}1\;mm^2$) was obtained. Second, optimization of inductive coupled plasma-reactive ion etching (ICP-RIE) was carried out to achieve anisotropy and high etch rate. The dry etching carried out using a gas mixture of SiCl4 and Ar, each having a flow rate of 10 sccm and 40 sccm, respectively with an RF power of 50 W, ICP power of 400 W and chamber pressure of 2 mTorr was the optimum etching condition. Last, the rest of GaAs substrate was successfully removed by highly selective backside wet etching with pH adjusted solution of citric acid and hydrogen peroxide. Citric acid/hydrogen peroxide etching solution having a volume ratio of 5:1 was the best etching condition which provides not only high selectivity of 235:1 between GaAs and AlAs but also good etching profile [3]. The fabricated transmission EAM array have an amplitude modulation of more than 50% at the bias voltage of -9 V and maintains high uniformity of >90% over large area ($2{\times}1\;mm^2$). These results show that the fabricated transmission EAM with substrate removed is an excellent candidate to be used as an optical shutter for HD 3D imaging application.

  • PDF

The Tribological Behaviors of Mesoporous $SiO_2$ Thin Film Formed by Sol-Gel and Self-Assembly Method (졸겔법과 자가조립법을 통해 제조된 메조포러스 $SiO_2$ 박막의 트라이볼로지 특성)

  • Lee, Young-Ze;Shin, Yun-Ha;Kim, Ji-Hoon;Kim, Ji-Man;Kim, Tae-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.298-300
    • /
    • 2007
  • Frictional characteristics of mesoporous $SiO_2$ thin films were evaluated with different pore sizes. The films were manufactured by sol-gel and self-assembly methods to have a porous structure. The pores on the surface may play as the outlet of wear particle and the storage of lubricant so that the surface interactions could be improved. The pores were exposed on the surface by chemical mechanical polishing (CMP) or plasma-etching after forming the porous films. The ball-on-disk tests with mesoporous $SiO_2$ thin films on glass specimen were conducted at sliding speed of 15 rpm and a load of 0.26 N. The results show considerable dependency of friction on pore size of mesoporous $SiO_2$ thin films. The friction coefficient decreased as increasing the pore size. CMP process was very useful to expose the pores on the surface.