• Title/Summary/Keyword: PLASMA ETCHING

Search Result 1,038, Processing Time 0.043 seconds

Endpoint Detection Using Both By-product and Etchant Gas in Plasma Etching Process (플라즈마 식각공정 시 By-product와 Etchant gas를 이용한 식각 종료점 검출)

  • Kim, Dong-Il;Park, Young-Kook;Han, Seung-Soo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.541-547
    • /
    • 2015
  • In current semiconductor manufacturing, as the feature size of integrated circuit (IC) devices continuously shrinks, detecting endpoint in plasma etching process is more difficult than before. For endpoint detection, various kinds of sensors are installed in semiconductor manufacturing equipments, and sensor data are gathered with predefined sampling rate. Generally, detecting endpoint is performed using OES data of by-product. In this study, OES data of both by-product and etchant gas are used to improve reliability of endpoint detection. For the OES data pre-processing, a combination of Signal to Noise Ratio (SNR) and Principal Component Analysis (PCA),are used. Polynomial Regression and Expanded Hidden Markov model (eHMM) technique are applied to pre-processed OES data to detect endpoint.

A study on the high selective oxide etching using magnetized helical resonator plasma source (자화된 헬리칼 공진기 플라즈마 소스를 이용한 고선택비 산화막 식각에 관한 연구)

  • Lee, Su-Bu;Im, Seung-Wan;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.309-314
    • /
    • 1999
  • The magnetized helical resonator plasma etcher has been built. Electron density and temperature were measured as functions of rf source power, axial magnetic field, and pressure. The results show electron density increases as the magnetic field increases and reached $2\times1012cm^{-3}$,/TEX>. The oxide etch rate and selectivity to polysilicon were investigated as the above mentioned conditions and self-bias voltage. We can obtain the much improved oxide etch selectivity to polysilicon (60 : 1) by applying the external axial weak magnetic field in magnetized helical resonator plasma etcher.

  • PDF

MICP(Multi-pole Inductively Coupled Plasma)를 이용한 deep contact etch 특성 연구

  • 김종천;구병희;설여송
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.12-17
    • /
    • 2003
  • 본 연구에서는 MICP Etching system 을 이용한 Via contact 및 Deep contact hole etch process 특성을 연구하였다. Langmuir probe 를 이용한 MICP source 의 Plasma density & electron temperature 측정하였고 탄소와 플로우르를 포함하는 혼합 Plasma 를 형성하여 RF frequency, wall temperature, chamber gap, gas chemistry 등의 변화에 따른 식각 특성을 조사하였다. Plasma density 는 1000w 에서 $10^{11}$/$cm^3$ 이상의 high density plasma와 uniform plasma 형성을 확인하였고 $CH_{2}F_{2}$와 CO의 적절한 혼합비를 이용하여 Oxide to PR 선택비가 10 이상인 고선택비 조건을 확보하였다. 고선택비 형성에 따라 Polymer 형성이 많이 되었고 이를 개선하기 위하여 반응 챔버의 온도 조절을 통하여 Polymer 증착 방지에 효과적인 것을 확인하였다. MICP source를 이용하여 탄소와 플로우르의 혼합 가스와 식각 챔버의 온도 조절에 의한 선택비 증가를 확보하여 High Aspect Ratio Contact Hole Etch 가능성을 확보하였다.

  • PDF

The Study for Investigation of the sufficient vertical profile with reducing loading effect for silicon deep trench etching (Vertical Profile Silicon Deep Trench Etch와 Loading effect의 최소화에 대한 연구)

  • Kim, Sang-Yong;Jeong, Woo-Yang;Yi, Keun-Man;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.118-119
    • /
    • 2009
  • This paper presents the feature profile evolution silicon deep trench etching, which is very crucial for the commercial wafer process application. The silicon deep trenches were etched with the SF6 gas & Hbr gas based process recipe. The optimized silicon deep trench process resulted in vertical profiles (87o~90o) with loading effect of < 1%. The process recipes were developed for the silicon deep trench etching applications. This scheme provides vertically profiles without notching of top corner was observed. In this study, the production of SF6 gas based silicon deep trench etch process much more strongly than expected on the basis of Hbr gas trench process that have been investigated by scanning electron microscope (SEM). Based on the test results, it is concluded that the silicon deep trench etching shows the sufficient profile for practical MOS FET silicon deep trench technology process.

  • PDF

Comparison of characteristics of silver-grid transparent conductive electrodes for display devices according to fabrication method (제조공법에 따른 디스플레이 소자용 silver-grid 투명전극층의 특성 비교)

  • Choi, Byoung Su;Choi, Seok Hwan;Ryu, Jeong Ho;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.75-79
    • /
    • 2017
  • Honeycomb-shaped Ag-grid transparent conductive electrodes (TCEs) were fabricated using two different processes, high density plasma etching and lift-off, and the optical and electrical properties were compared according to the fabrication method. For the fabrication of the Ag-grid TCEs by plasma etching, etch characteristics of the Ag thin film in $10CF_4/5Ar$ inductively coupled plasma (ICP) discharges were studied. The Ag etch rate increased as the power increased at relatively low ICP source power or rf chuck power conditions, and then decreased at higher powers due to either decrease in $Ar^+$ ion energy or $Ar^+$ ion-assisted removal of the reactive F radicals. The Ag-grid TCEs fabricated by the $10CF_4/5Ar$ ICP etching process showed better grid pattern transfer efficiency without any distortion or breakage in the grid pattern and higher optical transmittance values of average 83.3 % (pixel size $30{\mu}m/line$ width $5{\mu}m$) and 71 % (pixel size $26{\mu}m/line$ width $8{\mu}m$) in the visible range of spectrum, respectively. On the other hand, the Ag-grid TCEs fabricated by the lift-off process showed lower sheet resistance values of $2.163{\Omega}/{\square}$ (pixel size $26{\mu}m/line$ width $18{\mu}m$) and $4.932{\Omega}/{\square}$ (pixel size $30{\mu}m/line$ width $5{\mu}m$), respectively.

Etch Characteristics of CoTb and CoZrNb Thin Films by High Density Plasma Etching (고밀도 플라즈마 식각에 의한 CoTb과 CoZrNb 박막의 식각 특성)

  • Shin, Byul;Park, Ik Hyun;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.531-536
    • /
    • 2005
  • Inductively coupled plasma reactive ion etching of CoTb and CoZrNb magnetic materials with the photoresist mask was performed using $Cl_2/Ar$ and $C_2F_6/Ar$ gas mixtures and characterized in terms of etch rate and etch profile. As the concentrations of $Cl_2$ and $C_2F_6$ gases increased, the etch rates of magnetic films decreased and the etch slopes became slanted. The $Cl_2/Ar$ gas was more effective in obtaining fast etch rate and steep sidewall slope than the $C_2F_6/Ar$ gas. As the coil rf power and dc bias increased, fast etch rate and steep etch slope were obtained but the redeposition on the sidewall was observed. This is due to the increase of ion and radical densities in plasma with increasing the coil rf power and the increase of incident ion energy to the substrate with increasing the dc bias voltage. By applying high density reactive ion etching to magnetic tunnel junction stack containing various magnetic films and metal oxide, steep etch slope and clean etch profile without redeposition were obtained.

Etching of the PDP barrier rib material using laser beam (레이저빔에 의한 PDP 격벽 재료의 식각)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Sang-Don;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.526-532
    • /
    • 2000
  • The paste on the glass or fabrication of the PDP(Plasma Display Panel) barrier rib was selectively etched using focused A $r_{+}$ laser(λ=514 nm) and Nd:YAG(λ=532, 266 nm) laser irradiation. The depth of the etched grooves increase with increasing a laser fluence and decreasing a laser beam scan speed. Using second harmonic of Nd:YAG laser(532 nm) the etching threshold laser fluence was 6.5 mJ/c $m^2$ for the sample of PDP barrier rib. The thickness of 180 ${\mu}{\textrm}{m}$ of the sample on the glass was clearly removed without any damage on the glass substrate by fluence of 19.5J/c $m^2$beam scan speed of 20${\mu}{\textrm}{m}$ /s. In order to increase the etch rate of the barrier rib material barrier rib samples heated by a resistive heater during laser irradiation. The heated sample has many defects and becomes to be fragile. This imperfection of the structure compared to the sample without heat treatment allows the effective etching by the focused laser beam. The etch rates were 65${\mu}{\textrm}{m}$/s and 270 ${\mu}{\textrm}{m}$/s at room temperature and 20$0^{\circ}C$, respectively.y.

  • PDF

Development of High Performance Massively Parallel Processing Simulator for Semiconductor Etching Process (건식 식각 공정을 위한 초고속 병렬 연산 시뮬레이터 개발)

  • Lee, Jae-Hee;Kwon, Oh-Seob;Ban, Yong-Chan;Won, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.37-44
    • /
    • 1999
  • This paper report the implementation results of Monte Carlo numerical calculation for ion distributions in plasma dry etching chamber and of the surface evolution simulator using cell removal method for topographical evolution of the surface exposed to etching ion. The energy and angular distributions of ion across the plasma sheath were calculated by MC(Monte Carlo) algorithm. High performance MPP(Massively Parallel Processing) algorithm developed in this paper enables efficient parallel and distributed simulation with an efficiency of more than 95% and speedup of 16 with 16 processors. Parallelization of surface evolution simulator based on cell removal method reduces simulation time dramatically to 15 minutes and increases capability of simulation required enormous memory size of 600Mb.

  • PDF