PT-P33

Selective etching of Mo/HfO₂ in inductively coupled Cl₂/O₂ plasmas for gate stack patterning

H.Y. Jung, B.S. Kwon, H.J. Lee, S.I. Kim, H.W. Kim and N.-E. Lee

School of Advanced Materials Science & Engineering, Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 chunchun-dong, Suwon, Kyunggi-do 440-746, Republic of Korea

In this study, we investigated the etching characteristics of Mo and HfO₂ single layers and Mo/HfO₂ stacked structure for metal electrode/high-*k* gate stack patterning in Cl₂/O₂ inductively coupled plasmas and the effects of O₂ addition on the etch rates and etch selectivity of the Mo to the HfO₂ layer. By controlling the process parameters such as the Cl₂/O₂ flow ratio, the top electrode power and the dc self-bias voltage (V_{dc}), the Mo/HfO₂ etch selectivity as high as \approx 67 could be obtained. Addition of O₂ gas to the Cl₂/O₂ chemistry improved the Mo/HfO₂ etch selectivity because the O₂ gas in a certain flow ratio range reduced the HfO₂ etching reactions due to less chlorination of Hf but enhanced the Mo etch rate presumably due to effective formation of highly volatile Mo-O-Cl etch by-products. We could confirm the Mo selective etch to the HfO₂ layer.