• Title/Summary/Keyword: PLA(Polylactic acid)

Search Result 86, Processing Time 0.026 seconds

Properties of Smart Vapor Self-Releasing Composite Films to Microwave Packaging (증기 자가방출 스마트 전자레인지 포장재 적용을 위한 복합필름 특성연구)

  • Wooseok, Song;Hojun, Shin;Jongchul, Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • The demands for Home Meal Replacement (HMR) products are continuously increasing owing to the convenience of instant food and online food delivery. Ready-to-heat (RTH) products have received massive attention in the HMR industry because these products can be easily warmed using a microwave oven. However, the conventional microwave packaging should be opened before microwave heating to prevent bursting or food loss owing to the steam-pressure build-up inside the package. Open packaging might lead to non-uniform food heating and cross-contamination. Therefore, packaging materials that are able to release steam without opening are of interest to the HMR industry. In this study, polylactic acid(PLA)/polyethylene glycol(PEG)/nanoclay composite films were manufactured using an extrusion method as packaging materials with a smart steam-releasing function. The introduction of PEG to the PLA imparted a steam self-releasing feature to the composite films owing to the morphology change of composite films during microwave heating. Further, PEG increased the ductility of PLA, which in turn prevented bursting caused due to the steam-pressure build-up. The uniform dispersion of nanoclay obtained by a twin-screw extrusion led to stronger mechanical properties. Therefore, the smart composite films developed here can be applied as microwave packaging materials with a self-releasing function.

The effects of polylactic/polyglycolic copolymer (PLA/PGA) membrane on the healing of 1-wall intrabony defects in beagle dogs (성견 1면 골 결손부에서 Polylactic/polyglycolic acid copolymer (PLA/PGA) 흡수성 차단막의 치주 조직 재생에 대한 연구)

  • Kim, Sung-Koo;Hwang, Sung-Joon;Kim, Min-Kyoung;Kim, Chang-Sung;Lee, Doug-Youn;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.599-613
    • /
    • 2003
  • The goal of periodontal treatment is regeneration of the periodontium. Bone graft and absorbable PLA/PGA membrane have been used for this purpose. In this study, 4${\times}$4mm 1-wall intrabony defects were surgically created bilaterally in the mandible of five male beagles. The control group went through a conventional flap operation, while the experimental group I was treated with absorbable PLA/PGA membranes only, group II was treated with absorbable membrane and calcium phosphate. The results are the following : 1. The defect height was 4.82${\pm}$0.45mm in the control group, 4.93${\pm}$0.79mm in the experimental I group, and 4.92${\pm}$0.62mm in the experimental II group. There was no statistically significant difference among 3 groups(P <0.05). 2. The amount of junctional epithelium migration was 30.90${\pm}$9.92% of the defect height in the control group, 39.16${\pm}$7.51% in the experimental I group, and 38.68${\pm}$12.22% in the experimental II group. There was no statistically significant difference among 3 groups(P <0.05). 3. The amount of connective tissue adhesion was 36.38${\pm}$9.03% in the control group, 14.73${\pm}$3.93% in experimental I group, and 27.87${\pm}$9.70% experimental II group. Experimental group I was a statistically significantly different from control group(P <0.05). 4. The amount of new cementum regeneration was 32.92${\pm}$10.51%, 50.04${\pm}$7.61%, and 39.62${\pm}$12.14% for the control, experimental I, and experimental II group respectively. Experimental group I was a statistically significantly different from control group(P<0.05). 5. The amount of new alveolar bone regeneration was 27.24${\pm}$7.49%, 40.75${\pm}$8.03%, and 36.47${\pm}$15.11% for the control, experimental I, and experimental II group respectively. Experimental group I was a statistically significantly different from control group(P <0.05). The results suggest that the use of PLA/PGA membrane in 1-wall intrabony defect of beagle dogs may promote periodontal regeneration. Further studies are required to determine their regeneration effects.

Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex (스테레오 컴플렉스를 이용한 폴리유산 복합재 제조 및 성능 개선)

  • Hong, Chae-Hwan;Kim, Yeon-Hee;Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1671-1676
    • /
    • 2015
  • A unique crystallization behavior of poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall composition to form PLA stereocomplexes. Moreover, impact modifier and reinforcement materials such as talc and glass fiber added to enhance the mechanical and thermal properties such as impact strength and heat distortion temperature(HDT). As a result, we got one representative result, one composite recipe with HDT $115^{\circ}C$. For more economic technology, we tried to blend PLLA and Polypropylene at overall composition and we got another representative result which could be applied to current PP/talc composites and ABS materials. The core technology of this might be the well dispersion of glass fibers into the matrix resin such as PP, PLLA and impact strength modifier.

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle (탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발)

  • Wang, Haolin;Shin, Hyunseong
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.198-204
    • /
    • 2020
  • In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.

Fabrication of PEDOT:PSS/AgNW-based Electrically Conductive Smart Textiles Using the Screen Printing Method and its Application to Signal Transmission Lines (스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용)

  • Kang, Heeeun;Lee, Eugene;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.527-535
    • /
    • 2021
  • In this study, electroconductive textiles were developed by screen-printing technology using a complex solution of PEDOT:PSS/AgNW on a polylactic acid nanofiber web. A performance evaluation was then conducted to utilize this electroconductive textile as a signal transmission line. To obtain highly conductive electroconductive textiles, this study sought to determine the optimal mixing ratio of PEDOT:PSS/AgNW. Sheet resistance was measured to evaluate the electrical properties of electroconductive textiles, Finite element-scanning electron microscopy images were then used to examine surface properties, and Fourier transform-infrared analysis was performed to evaluate chemical properties. The signal waveform characteristics of the electroconductive textile were observed using a signal generator and an oscilloscope. Radio-frequency characteristics were then evaluated to confirm frequency range, and bending tests were conducted to evaluate durability. The signal transmission lines produced in this study had a sheet resistance value of 3.30 ?/sq, and signal transmission performance was evaluated to observe that the input value of the voltage was nearly identical to the output value. In addition, S21 analysis confirmed that it was available in the frequency domain up to 35 MHz. The performances of the transmission lines were maintained after 100, 200, 500, and 1,000 repeated bending tests, and sufficient durability was confirmed.

Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure (3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정)

  • Park, Jihoon;Jeon, Haejoon;Park, Kyungho;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

Radiological Characteristics of Materials Used in 3-Dimensional Printing with Various Infill Densities

  • Park, So-Yeon;Choi, Noorie;Choi, Byeong Geol;Lee, Dong Myung;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.155-159
    • /
    • 2019
  • Radiological properties of newly introduced and existing 3-dimensional (3D) printing materials were evaluated by measuring their Hounsfield units (HUs) at varying infill densities. The six materials for 3D printing which consisted of acrylonitrile butadiene styrene (ABS), a unique ABS plastic blend manufactured by Zortrax (ULTRAT), high impact polystyrene (HIPS), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), and a thermoplastic polyester elastomer manufactured by Zortrax (FLEX) were used. We used computed tomography (CT) imaging to determine the HU values of each material, and thus assess its suitability for various applications in radiation oncology. We found that several material and infill density combinations resembled the HU values of fat, soft tissues, and lungs; however, none of the tested materials exhibited HU values similar to that of bone. These results will help researchers and clinicians develop more appropriate instruments for improving the quality of radiation therapy. Using optimized infill densities will help improve the quality of radiation therapy by producing customized instruments for each field of radiation therapy.

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Effects on Changes of the Speed of Sound and the Broadband Ultrasound Attenuation on the Medium's Infilling in Additive Manufacturing Method of 3D Printing (3차원 프린팅 적층가공 방식에서 매질 내부 충전이 초음파 속도와 감쇠에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The purpose of this study was investigating the effect of 3D printing technology that changes the speed of sound (SOS) and the broadband ultrasound attenuation (BUA) by controlling the density of the media phantom. We used 3D printers which called additive manufacturing (AM) by using material with polylactic acid (PLA). The inside of the medium phantom was filled crossly with 100%, 90%, 80%, 70%, 60%, and 50% of the material. The ultrasonic instrument measured the SOS and the BUA using a 0.55 MHz ultrasound output in opposing mode with a pair of transducers. As a result, the density of the medium phantoms with the SOS showed very high correlation (r = 0.944), but the SOS showed very low correlation (r = 0.500). It is expecting that the manufacturing and measurement method of the medium phantom using 3D printing technology will be used as basic data for ultrasonic bone mineral density.