• Title/Summary/Keyword: PIV method

Search Result 320, Processing Time 0.023 seconds

Measurement of Flow Field in a Domestic Hot-Water Pump by PIV (PIV에 의한 가정용 온수펌프의 유동장 계측)

  • Lee, H.;Im, Y. C.;Kim, J. H.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.264-271
    • /
    • 1999
  • The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.

  • PDF

Development of 3-D Volume PIV (3차원 Volume PIV의 개발)

  • Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho;Kim, Mi-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

Development of 3-D Stereo PIV by Homogeneous Coordinate System (호모지니어스 좌표계를 이용한 3차원 스테레오 PIV 알고리듬의 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.736-743
    • /
    • 2003
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of an illuminated slied section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of the oblique-angled image to the right-angled image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method (단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측)

  • Sung Jaeyong;Park Sang Min;Yoo Jung Yul
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

PIV Applications for Flow Analysis of Tetrapod and Artificial Reef (소파블록과 인공어초 주위의 유동 해석을 위한 PIV 적용)

  • Lee Gyoung-Woo;Jo Dae-Hwan;Kim Ho;Lee Seung-Keon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper an application example of PIV system for analyzing the flow of submerged structure. In this paper, we introduce an analysis method to predict the characteristics of flow around the neighboring fields of tetrapod and fishing reef in order to develop a high performance model. Flowing phenomenon according to velocity distribution and flow separation around the submersed body were obtained by PIV system. Flow visualization has conducted in a circulating water channel by a high speed camera and etc.

  • PDF

Comparison of Velocity Fields of Wake behind a Propeller Using 2D PIV and stereoscopic PIV (2D PIV와 stereoscopic PIV 기법으로 측정한 프로펠러 후류의 속도장 비교 연구)

  • Paik Bu-Geun;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-26
    • /
    • 2002
  • The phase-averaged velocity fields of 3 dimensional turbulent wake behind a marine propeller measured by 2D PIV and stereoscopic PIV(SPIV) were compared directly. In-plane velocity fields obtained from the consecutive particle images captured by one camera in 2D PIV have perspective errors due to out-of-plane motion. However, the perspective errors can be removed by measuring three component velocity fields using SPIV method with two cameras. It is also necessary to measure three components velocity fields for the investigation of complicated near-wake behind the propeller for the suitable propeller design. 400 instantaneous velocity fields were measured for each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}C\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the downstream region. The phase-averaged velocity fields show the viscous wake developed along the blade surfaces and tip vortices were formed periodically. The perspective errors caused by the out-of-plane motion was estimated by the comparison of 2D PIV and SPIV results. The difference in the axial mean velocity fields measured by both techniques are nearly proportional to the mean out-of-plane velocity component which has large values in the regions of the tip and trailing vortices. The axial turbulence intensity measured by 2D PIV was overestimated since the out-of-plane velocity fluctuations influence the in-plane velocity vectors and increase the in-plane turbulence intensities.

  • PDF

Microfluidic Method for Measurement of Blood Viscosity based on Micro PIV (Micro PIV 를 기반한 혈액 점도 측정 기법)

  • Hong, Hyeonji;Jung, Mirim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • Increase of blood viscosity significantly changes the flow resistance and wall shear stress which are related with cardiovascular diseases. For measurement of blood viscosity, microfluidic method has proposed by monitoring pressure between sample and reference flows in the downstream of a microchannel with two inlets. However, it is difficult to apply this method to unknown flow conditions. To measure blood viscosity under unknown flow conditions, a microfluidic method based on micro particle image velocimetry(PIV) is proposed in this study. Flow rate in the microchannel was estimated by assuming velocity profiles represent mean value along channel depth. To demonstrate the measurement accuracy of flow rate, the flow rates measured at the upstream and downstream of a T-shaped microchannel were compared with injection flow rate. The present results indicate that blood viscosity could be reasonably estimated according to shear rate by measuring the interfacial width and flow rate of blood flow. This method would be useful for understanding the effects of hemorheological features on the cardiovascular diseases.

Performance Tests of the Frozen Air Flows in a Refrigerator using PIV/POD Technique (PIV/POD 기법을 이용한 냉장고 냉기류 성능평가)

  • Kim, Kyung-Chun;Kim, Seok-Ro;Kim, Jong-Wook
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.97-100
    • /
    • 2007
  • A new evaluation method for the performance tests of the frozen air in a refrigerator using PIV(Particle Imaging Velocimetry) and POD(Proper Orthogonal Decomposition) techniques is introduced. A two-door refrigerator model was tested for the experiments. Actual temperature measurements were carried out for the drawer No.4 in refrigerator. By evaluating the characteristics of the interior flow of the refrigerator, an optimal shape of the drawer could be suggested through the PIV evaluation test. In this research, in order to find influences the turbulent kinetic energy contribution associated with the dynamic structures, we executed a POD analysis using the method of snapshots and the instantaneous fluctuating velocity field.

  • PDF

A Study about Choice of Industrial Mixer's Impeller Type for Concentration Measurement Method and PIV (농도계측기법과 PIV에 의한 산업용 교반기 Impeller 형상 선정에 관한 연구)

  • Kim, Dong-Kyun;Bae, Suk-Tae;Kim, Jeong-Hwan;Kim, Oh-Keun;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.413-419
    • /
    • 2006
  • The Industrial Mixers are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types. Screw type and Rushton turbine type. In this study choice of the Industrial Mixer's Impeller type for distribution of concentration and PIV measurement method. The rotating speed of impellers are fixed by 100RPM.

Analytics of PIV Measurement and Its Application for Higher Performances

  • NISHIO Shigeru;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.62-74
    • /
    • 2001
  • Present paper describes the principles of PIV measurement approaching from the analytical view, which enables to explain the general form of principles covering all the PIV measurement, and that gives theoretical basis for its higher measurement performances. The explanation of the measurement principles started from the definition of governing equation in differential form as same as the gradient method, and the integral along the particle path line was executed to show the principle of the correlation method with same basis. The integral processes clearly shows the analytical reason why the correlation peak gives the terminal point of path line, and how the effects of deformation and rotation of fluid appears in the correlation map. These results have no differences from our experiences and understandings of the conventional PIV measurement definition in final form. However, the analytical approach enable to understand those facts a priori, and it makes easy to achieve the innovative higher performances of measurement. Analytical explanation clearly shows the behavior of the residual errors caused by the fluid motion, and it enables to analyze the measurement uncertainty theoretically.

  • PDF