• Title/Summary/Keyword: PID tuning

Search Result 497, Processing Time 0.033 seconds

Design of Fuzzy PD+I Controller Based on PID Controller

  • Oh, Sea-June;Yoo, Heui-Han;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.

A Study on AGV Steering Control using TDOF PID Controller (2자유도 PID 제어기를 이용한 AGV의 조향 제어에 관한 연구)

  • Lee, Gwon-Sun;Lee, Yeong-Jin;Son, Ju-Han;Lee, Man-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.241-248
    • /
    • 2000
  • Until now, all of the port goods are transported manually by container transporter in the port. Recently there are a lot of studies about unmanned vehicle driven automatically. In terms of the vehicle automation, the control of steering and velocity on vehicle systems is very important part in container transporter. In common sense, vehicle systems have lots of nonlinear parameters so we have many difficulties in designing the optimal controller of them. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control the steering system optimally. We used the single-track model to pre-test the designed controller before appling to AGV. We also used the ES(evolutionary strategy) and SA(simulated annealing) algorithms to construct the hybrid tuning algorithm for parameters of controller. Finally, we had the computer simulation to verify that our designed controller has better performance than the other one.

  • PDF

Development of a Pneumatic Servomechanism Using a Direct-connected Circuit between Inlet and Outlet and Its Application to the Design of a Fuzzy Position Controller for a Fingering System (흡배기구 직결회로를 이용한 공압 서보장치의 개발과 집게 시스템용 퍼지제어기 설계)

  • Choi, Kap-Yong;Choi, In-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.593-608
    • /
    • 1995
  • In this study two issues are considered, one is to develop a pneumatic servomechanism using a direct-connected circuit between inlet and outlet, the other is to design two kinds of advanced controllers such as fuzzy and PID controllers for a fingering system. Besides, the application of the advanced controllers to the newly proposed servomechanism is presented. The procedure of this study is composed of following 6 steps : [Step 1] Structuring of a control system; [Step 2] Development of a pneumatic circuit for the servomechanism ; [Step 3] Characteristic analysis of the valve and cylinder systems ; [Step 4] Determination of optimal parameters of the PID controller ; [Step 5] Design of a fuzzy controller and parameter tuning; and, [Step 6] Experimental analysis of fuzzy and PID controllers. Experimental results show that the newly proposed pneumatic servomechanism has good performance and, not only the performance of the fuzzy controller is better than that of the PID controller but also the fuzzy controller fits well to the control of the pneumatic servomechanism.

  • PDF

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables

  • Amirahmadi, Ahmadreza;Rafiei, Mohammadreza;Tehrani, Kambiz;Griva, Giovanni;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.160-176
    • /
    • 2015
  • This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Development of Digital Gas Metal Arc Welding System and Welding Current Control Using Self-tuning Fuzzy PID

  • Doan, Phuc Thinh;Pratama, Pandu Sandi;Kim, Suk-Yoel;Kim, Hak-Kyeong;Yeun, Hwang-Yeong;Byun, Gi-Sig;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1-8
    • /
    • 2011
  • This paper describes a new method for a digital gas metal arc welding (GMAW) system. The GMAW system is an arc welding process that incorporates the GMAW power source (PS-GMAW) with a wire feed unit (WFU). The PS-GMAW requires an electric power of constant voltage. A constant magnitude is maintained for the arc current by controlling the wire-feed speed of the WFU. A mathematical model is derived, and a self-tuning fuzzy proportional-integral-derivative (PID) controller is designed and applied to control the welding current. The electrode wire feeding mechanism with this controller is driven by a DC motor, which can compensate for both the molten part of the electrode and undesirable fluctuations in the arc length during the welding process. By accurately maintaining the output welding current and welding voltage at constant values during the welding process, excellent welding results can be obtained. Simulation and experimental results are shown to prove the effectiveness of the proposed controller.

Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment (이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현)

  • Ha, Hong-Gon;Lee, Chang-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Recently, the application of the linear machine for industrial field is remarkably increased, especially for the gantry machine, machine tool system and CNC. However a linear meter remains the vibrational characteristic itself therefore, In these application fields, high position control performance is essentially required in both the steady and the transient states. In this paper, the design method for a position control is proposed by using the two-degree-of freedom PID controller. This method has great features for the linear machine drives such as no over-shoot phenomena and single gain tuning strategy. By comparison with conventional PID controller, the improvement of performance of a linear motor control system using two degrees of freedom controller are discussed. Through the simulation results, the usefulness of the proposed algorithm is proved. With the simulation results, it was made clear that the introduction of two degrees of freedom controller designed by the proposed method not only improves the over shoot and starting characteristic of response but also removes the undesirable characteristic variation.

  • PDF

Design and Control of a Six-degree of Freedom Autonomous Underwater Robot 'CHALAWAN'

  • Chatchanayuenyong, T.;Parnichkun, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1110-1115
    • /
    • 2004
  • Water covers two-thirds of the earth and has a great influence on the future existence of all human being. Thailand has extensive coastline and near shore water that contain vast biological and mineralogical resources. The rivers and canals can be found around the country especially in the Bangkok, which once called the Venice of the East. Autonomous underwater robot (AUR) will be soon a tool to help us better understand water resources and other environmental issues. This paper presents the design and basic control of a six-degree of freedom AUR "Chalawan", which was constructed to be used as a testbed for shallow. It is a simple low cost open-frame design, which can be modified easily to supports various research areas in the underwater environment. It was tested with a conventional proportional-integral-derivative (PID) controller. After fine-tuning of the controller gains, the results showed the controller's good performances. In the future, the dynamic model of the robot will be analyzed and identified. The advanced control algorithm will be implemented based on the obtained model.

  • PDF

A Study on Current, Velocity, Position Gain Tuning Technique of Servo Position Controller using Simulation (시뮬레이션을 이용한 서보 위치제어기의 전류, 속도, 위치이득 동조기법에 관한 연구)

  • Park, Ki-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.634-640
    • /
    • 2011
  • When a servo position controller of a robot or a driving units is composed of a PID controller, servomechanism which is modelled is composed of current, velocity and position control loops. After this model is simulated, the technique operating gain of each controller is suggested. The model consists of current, velocity and position controllers from the inside to the outside gradually. Also, to combine velocity and position controllers with 2 order system, simulation is performed after current controllers are composed, which are able for current loop to work ideally. If a current controller is treated with constant, it is possible for velocity and position controller to consist of controller into 2 order system. The technique is verified by applying T-company servo motor which is much more applied to current, velocity and position controller robots.

System Identification(SOPTD) using relay feedback test combined with P controller and Design of IMC-PID controller via Target Function (릴레이와 비례제어기를 이용한 이차시간지연 모델에 대한 목표함수를 이용한 IMC-PID제어기 동조)

  • Koo, Min;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1862-1863
    • /
    • 2006
  • In this paper, A new tuning method for IMC-PID controller is proposed with the identification using the relay method from closed-loop transfer function. It is considered a second-order plus delay time(SOPDT) model and selected a third-order plus delay time transfer function model as a target function. The filter function is derived from the suitable target function to satisfy the design specifications. A robustness test was done to verify the robust-stability.

  • PDF