Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.1.160

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables  

Amirahmadi, Ahmadreza (Department of Electrical Engineering and Computer Science, University of Central Florida)
Rafiei, Mohammadreza (Politechnico Di Torino)
Tehrani, Kambiz (University of Nancy (INPL))
Griva, Giovanni (Politechnico Di Torino)
Batarseh, Issa (Department of Electrical Engineering and Computer Science, University of Central Florida)
Publication Information
Journal of Power Electronics / v.15, no.1, 2015 , pp. 160-176 More about this Journal
Abstract
This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.
Keywords
Boost converter; Chaos; FOPID controller; Multi-objective optimization; PID controller;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. J. Perez-Pinal, C. Nunez, and R. Alvarez, "Direct voltage control for boost converter," 1st International Conference on Electrical and Electronics Engineering, pp. 579-583, 2004.
2 E. Vidal-Idiarte, L. Martinez-Salamero, H.Valderrama-Blavi, F. Guinjoan, and J. Maixe, "Analysis and design of $H^{\infty}$ control of non-minimum phase-switching converters," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 50, No. 10, pp. 1316-1323, Oct. 2003.   DOI
3 R. Naim, G. Weiss, and S. Ben-Yaakov, "$H^{\infty}$ control applied to boost power converters" IEEE Trans. Power Electron., Vol. 12, No. 4, pp. 677-683, Jul. 1997.   DOI   ScienceOn
4 R. Naim, G. Weiss, and S. Ben-Yaakov, "$H^{\infty}$ control of boost converters: Comparison to voltage mode, feedforword and current mode controls," in Proc. IEEE PESC Tage Mode, Vol. 2, pp. 1327-1332, 1995.
5 G. C. Loannidis and S. N. Manias, "$H^{\infty}$ loop-shaping control schemes for buck converter and their evaluation using ${\mu}$-analysis," IEE Proc-Electr. Power Appl., Vol. 146, No. 2, pp. 237-246, Mar. 1999.   DOI   ScienceOn
6 S. Buso, "Design of a robust voltage controller for a buck-boost converter using ${\mu}$-Synthesis," IEEE Trans. Contr. Syst. Technol., Vol. 7, No. 2, pp. 222-229, Mar. 1999.   DOI   ScienceOn
7 G. F. Wallis and R. Tymerski, "Generalized approach for ${\mu}$ synthesis of robust switching regulators," IEEE Trans. Aerosp. Electron. Syst., Vol. 36, No. 2, pp. 422-431, Apr. 2000   DOI   ScienceOn
8 J. Bu, M. Sznaier, Z.-Q. Wang, and I. Batarseh, "Robust controller design for a parallel resonant converter using ${\mu}$-sysnthesis," IEEE Trans. Power Electron., Vol. 12, No. 5, pp. 837-853, Sep. 1997.
9 F. Alonge, F. D'Ippolito, and T. Cangemi, "Hammerstein model-based robust control of DC/DC converters," in Proc. IEEE PEDS2007 Conf., pp. 754-762, 2007.
10 T. Gupta, R. R. Boudreaux, R. M. Nelms, and Y. Hung, "Implementation of a fuzzy controller for DC-DC converters using an 8-b micro controller," IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 661-669, Oct. 1997.   DOI   ScienceOn
11 V. S. C. Ravirij and P. C. Sen, "Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters," IEEE Trans. Ind. Appl., Vol. 33, No. 2, pp 518-524, Apr. 1997.   DOI   ScienceOn
12 E. Vidal, L. Martinez-Salamero, F. Guinjoan, J. Calvente, and Gomariz, "Sliding and fuzzy control of a boost converter using an 8-bit microcontroller," IEE Proc.-Electr. Power Appl., Vol. 151, No. 1, pp. 5-11, Jan, 2004.   DOI   ScienceOn
13 A. Balestrino, A. Landi, and L. Sani, "CUK converter global control via fuzzy logic and scaling factors," IEEE Trans. Ind. Appl., Vol. 38, No. 2, pp. 406-413, Apr. 2002.   DOI   ScienceOn
14 S. K. Mazumder, A. H. Nayfeh, and D. Borojevic, "Robust control of parallel DC-DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes," IEEE Trans. Power Electron., Vol. 17, No. 3, pp. 428-437, May 2002.   DOI   ScienceOn
15 L. Guo, J. Y. Hung, and R. M. Nelms, "Evaluation of DSP-based PID and fuzzy controllers for DC-DC converters" IEEE Trans. Ind. Electron., Vol. 56, No. 16, pp. 2237-2249, Jun. 2009   DOI   ScienceOn
16 F. H. F. Leung, P. K. S. Tam, and C. K. Li, "The control of switching dc-dc converters-A general LQR problem," IEEE Trans. Ind. Electron. Vol. 38, No. 1, pp. 65-71, Feb. 1991.   DOI   ScienceOn
17 A. Davoudi, J. Jatskevich, and T. D. Rybel, "Numerical state-space average-value modeling of PWM Dc-DC converters operating in DCM and CCM," IEEE Trans. Power Electron., Vol. 21, No. 4, pp.1003-1012, Jul. 2006   DOI   ScienceOn
18 F. H. F. Leung, P. K. S. Tam, and C. K. Li, "An improved LQR-based controller for switching DC-DC converters," IEEE Trans. Ind. Electron., Vol. 40, No. 5, pp. 521-528, Oct. 1993.
19 D. Czarkowski, L. R. Pujara, and M. K. Kazimicrczuk, "Robust stability of state-feedback control of PWM DC-DC push-pull converter," IEEE Trans. Ind. Electron., Vol. 42, No. 1, pp. 108-111, Feb. 1995.   DOI   ScienceOn
20 Y.-H. Chang and L.-W. Chen, "QFT-based robust controller design of series resonant DC/DC converters," IEEE International Electric Machines and Drives Conference, pp.18-21, 1997.
21 J. H. B. Deane, "Chaos in a current-mode controlled boost DC-DC converter," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 39. No. 8, pp. 680-683, Aug. 1992.   DOI
22 S. Banerjee, "Nonlinear modelling and bifurcation in boost converter," IEEE Trans. Power Electron., Vol. 13, No. 2, pp. 253-260, Mar. 1998.
23 J. L. R. Marrero, J. M. Font, and G. C. Verghese, "Analysis of the chaotic regime for DC-DC converters under current-mode control," Power Electronics Specialists Conference, PESC, pp. 1477-1483, 1996.
24 M. B. Shadmand, M. Mosa, R. S. Balog, and H. A. Rub, "An improved MPPT technique of high gain DC-DC converter by model predictive control for photovoltaic applications," IEEE Applied Power Electronics Conference & Exposition (APEC), pp. 2993-2999, 2014.
25 D. Maiti, A. Acharya M. Chakraborty, A. Konar, and R. Janarthanan, "Tuning PID and fractional PID controllers using the integral time absolute error criterion," 4th International Conference on Information and Automation for Sustainability, pp. 457-462, 2008.
26 R. Ahmadi, D. Paschedag, and M. Ferdowsi "Closed-loop input and output impedances of DC-DC switching converters operating in voltage and current mode control," IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 2311-2316, 2100.
27 N. Zhu, W. L. Wu, and J. A. Shao. "Chaos control strategy for the current-mode boost converter with small parameter perturbation," Journal of Circuits and Systems, Vol. 9, pp. 79-83, Feb. 2004.
28 A. N. Natsheh, N. B. Janson, and J. G. Kettleborough "Control of chaos in a DC-DC boost converter," IEEE International Symposium on Industrial Electronics, pp. 317-322, 2008.
29 B. Jayakrishna and V. Agarwal "FPGA implementation of QFT based controller for a buck type DC-DC power converter and comparison with fractional and integral order PID controllers," COMPEL, pp. 1-6, 2008.
30 Y. Luo and J. Li, "The controlling parameters tuning and its application of fractional order PID bacterial foraging-based oriented by particle swarm optimization," IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 4-7, 2009.
31 D. Valsrio, J. S. da Costa, "Tuning of fractional PID controllers with Ziegler-Nichols-type rules," Signal Processing, Vol. 86, No. 10, pp. 2771-2784, Oct. 2006.   DOI   ScienceOn
32 E. Zitzler and L. Thiele, "Multi-objective evolutionary algorithms-A comparative case study and the strength pareto approach," IEEE Trans. Evol. Comput., Vol. 3, No. 4, pp. 257-271, Nov. 1999.   DOI   ScienceOn
33 N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic algorithms," IEEE Trans. Evol. Comput., Vol. 2, No. 3, pp. 221-248, Sep. 1994.
34 P. Hajela and C. Y. Lin, "Genetic search strategies in multicriterion optimal design," Structural Optimization, Vol. 4, No. 2, pp. 99-107, Jun. 1992.   DOI
35 M. P. Fourman, "Compaction of symbolic layout using genetic algorithms," in Proc. Int. Conf. Genetic Algorithms and Their Applications, 1985.
36 J. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched pareto genetic algorithm for multiobjective optimization," in Proc. 1st IEEE Conf. Evolutionary Computation, IEEE World Congr. Computational Computation, Vol. 1, pp. 82-87, 1994.
37 Y. Zhao, Y. Gao, Z. Hu, Y. Yang, J. Zhan, and Y. Zhang, "Damping inter area oscillations of power systems by a fractional order PID controller," International Conference on Energy and Environment Technology, pp. 103-106, 2009.
38 J.-Y. Cao and B.-G. Cao, "Design of fractional order controller based on particle swarm optimization," Int. J. Control, Automat., Syst., Vol. 4, No.6, pp. 775-781, Dec. 2006
39 D. Kundu, K. Suresh, S. Ghosh, and S. Das, "Designing fractional-order PID controller using a modified invasive weed optimization algorithm," World Congress on Nature and Biologically Inspired Computing, pp. 1315-1320, 2009.
40 I. Podlubny "Fractional-order system and PI${\alpha}D{\beta}$-controller," IEEE Trans. Automat. Contr., No. 44, No. 1, pp. 208-214, Jan. 1999.   DOI   ScienceOn
41 J.-Y. Cao, J. Liang, B.-G. Cao, "Optimization of fractional ordered PID controllers based on genetic algorithms," in Proc. the Fourth International Conference on Machine Learning and Cybernetics, pp. 5686-5689, 2005.
42 J. Leyva-Ramos and A. Morales-Saldaa "Uncertainty models for switch-mode DC-DC converters," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 47, No. 2, pp. 200-203, Feb. 2000.   DOI   ScienceOn
43 M. Cai, X. Pan, and Y. Du, "New elite multi-parent crossover evolutionary optimization algorithm of parameters tuning of fractional-order PID controller and its application," Fourth International Conference on Innovative Computing, Information and Control, pp. 64-67, 2009.
44 S. M. R. Rafiei, R. Ghazi, R. Asgharian, M. Barakati, and H. A. Toliyat, "Robust control of DC-DC PWM converters: A comparison of H_inf, Miu, and fuzzy logic based approaches," in Proc. the IEEE 2003 Control Applications Conference, pp. 603-608, 2003.
45 R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Kluwer Academic Publisher, 2000.
46 F. Alonge, F. D'Ippolito, T. Cangemi, "Identification and robust control of DC/DC converter Hammerstein model," IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2990-3003, Nov. 2008.   DOI   ScienceOn
47 A. G. Beccuti, G. Papafotiou, and M. Morari, "Optimal control of the DC-DC converter," in Proc. the IEEE Conference on Decision and Control, pp. 4457-4462, 2005.
48 G. Garcera, A. Abellan, and E. Figueres, "Sensitivity study of the control loops of DC-DC converters by means of robust parametric control theory," IEEE Trans. Ind. Electron., Vol.49, No. 3, pp. 581-586, Jun. 2002.   DOI   ScienceOn
49 J. H. B. Dean and D. C. Hamill, "Instability, subharmonics, and chaos in power electronic systems," IEEE Trans. Power Electron., Vol. 5, No. 3, pp. 581-586, Jul. 1990.
50 D. C. Hamill, J. H. B. Dean, and D. J. Jefferies, "Modeling of chaotic DC-DC converters by iterated non-linear mappings," IEEE Trans. Power Electron., Vol. 7, No. 1, pp. 21-36, Jan. 1992.
51 R. D. Middlebrook and S. Cuk, "A general unified approach to modeling switching converter power stages," Int. J. Electron., Vol. 42, No. 6, pp. 521-550, Jun. 1977.   DOI   ScienceOn