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Abstract 

 
This paper presents a method of designing optimal integer- and fractional-order proportional–integral-derivative (FOPID) 

controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective 
optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and 
dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which 
corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with 
a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also 
overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and 
potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired 
dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. 
Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of 
desired technical goals. 
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I. INTRODUCTION 
Control of DC–DC converters has been of particular 

interest in the last two decades [1]-[4]. From the control point 
of view, nearly all the power conversion systems are regarded 
as a tracking problem because the output quantity should 
follow the reference command with a fast transient behavior 
and a low steady-state error. Most of these systems are 
inherently time varying, uncertain [5], [6], have a 
non-minimum phase, and are non-linear with some possible 
complex behavior like chaos [7], [8]. The most popular 

method for modeling DC–DC converters is state space 
averaging. State space averaging provides an approximate 
linear time-invariant (LTI) model [2], [9], [10]. This model 
does not adequately predict a large signal behavior of the 
converters. Accordingly, limited linear control approaches are 
designed based on the non-linear model of the converter. 
These approaches cannot normally guarantee an optimized 
large signal behavior, including the start-up regime. Even 
advanced linear control approaches, such as	 [11]-[13], µ 
[14]-[17], and Hammerstein model-based control [3], [18] 
cannot guarantee a fast and low overshoot response in the 
start-up period [1]. One solution is using non-linear and 
intelligent controllers, such as fuzzy controllers. 
Implementing these controllers is harder than implementing 
linear controllers, especially in the digital domain [19]-[24]. 

Other linear solutions, such as the linear quadratic 
regulator [25], linear quadratic Gaussian [26], [27], and 
quantitative feedback theory [28], which are designed based 
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on the linearized model of the converter, are not appropriate 
choices for large signal conditions. However, these solutions 
overcome the model uncertainties of the converters [5], [6]. 
Another design difficulty based on the LTI model is that the 
calculated LTI model depends on the operating point of the 
converter. Any change in the reference command, load 
parameters, or input DC voltage may alter the operating 
condition of the system. Consequently, this change alters 
some parameters of the corresponding LTI model [29]. 

The closed loop DC–DC power converter may exhibit 
complex and chaotic behavior in some cases [30]-[35]. This 
chaotic behavior is undesirable because it may result in 
low-quality output signal and undesirable acoustic noise [36]. 
Such a complex behavior and the existence of various major 
sources of uncertainty make the controller design task 
difficult. The results from Ref. [1] indicate that a linear 
controller may not be useful in overcoming switching 
instability. 

Linear controllers are prevalently used in industrial 
applications because implementing them is straightforward. 
Attempts to improve the quality and robustness of the PID 
controllers have been continuously conducted [37]. Using 
fractional-order controllers with non-integer derivation and 
integration parts is one method of improving the traditional 
PID controllers. However, the difficulties of designing 
fractional-order PID (FOPID) compared with traditional PID 
controllers are relatively higher because FOPID controllers 
include derivative and integrated orders as design parameters 
[38]. Using the FOPID controller may provide better 
robustness for a linear system if the dynamic characteristics 
are basically the same using either integer-order PID 
controller or FOPID controller [39]. The conventional FOPID 
controller tuning methods are regularly based on estimating 
the order of fractional calculus using experience first, and 
then tuning other parameters according to the tuning methods 
of the integer-order controllers. The designed controller 
acquires better results than integer-order controllers. 
However, the efficiency is still relatively low. Furthermore, 
these tuning methods may fail to achieve the global optimal 
solution [40]. 

An evolutionary approach such as the genetic algorithm 
with a proper objective function is a good approach in 
designing an integer or fractional-order PID controller for a 
non-linear and complex system. However, selecting an 
appropriate objective function is critical. Traditionally used 
objective functions, such as integral of the squared error and 
integral of time multiplied by absolute error, may not lead to 
a favorable response because they do not represent the output 
desired characteristics (e.g., overshoot and settling time) in an 
explicit manner. Therefore, several modifications in the 
objective function through trial and error may be required. 

First, this paper aims to design a simple PID controller to 
gain an optimized transient, steady-state response, and 

switching stability for various operating points using the 
SPEA multi-objective optimization approach [41]. This 
approach is based on the Pareto optimality concept used in 
game theory literature. Settling time, overshoot, dynamic 
response, robustness, and switching stability are employed as 
objective functions. The gains of the PID controller (i.e., Kp, 
Ki, and Kd) and the maximum and the minimum of the 
modulator harder are the design variables. Second, this paper 
implements the SPEA to design the FOPID controller. The 
FOPID controller design is considered a real parameter 
optimization problem in a five-dimensional hyperspace. This 
paper concludes with a comparison of the results of the 
optimized integer and the FOPID controller. 

  

II. MULTI-OBJECTIVE OPTIMIZATION 
A general multi-objective problem is represented as 

follows: Min/Max	 = () = (), (), … ()									(1) Subject	to	 = , ,… .   			&	 = (, , … )  
where x, X, y, and Y are the decision vector, parameter space, 
objective vector, and objective space, respectively. 
Evolutionary algorithms (EAs) are often well suited for 
optimization problems that involve several, often conflicting 
objectives. The EAs are divided into three major categories 
[41]. 

The first category is based on plain aggregating approaches, 
which combine the desired goals of the optimization problem, 
construct a scalar function, and use a common scalar 
optimization approach to solve the problem. The major 
problem of these methodologies is the unavailability of any 
straightforward methods for combining the objectives or 
goals of the problem. However, its advantage is its simplicity 
and its ability to produce a single solution. 
The second category is the population-based non-Pareto 
approaches, where the search is guided in several directions 
at the same time by changing the selection criterion during 
the reproduction phase. The fraction of the mating pool in 
this type is selected according to one of the objectives or 
multiple linear combinations of the objectives in parallel. 
Some advanced approaches in this category are as follows: 
 

- Hajela’s and Lin’s genetic algorithm [42] 
- Vector-evaluated genetic algorithm [43] 

 

The last category is the Pareto-based approaches, which 
use the Pareto dominance to determine the reproduction 
probability of each individual. 

According to the definition of the Pareto dominance, 
vector a in the search space dominates vector b if ∀∈ {1,2,… , }:	() ≥ () ∃∈ {1,2,… . , }:		() > ()         (2) 

b is called dominated if at least one vector dominates b and 
called non-dominated, otherwise. Each non-dominated 
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solution is regarded optimal in the sense of Pareto or called 
Pareto optimal. One is obviously the best in terms of one of 
the objectives between any pairs of points on a Pareto set. 
The set of all non-dominated solutions is called the Pareto 
optimal set. The set of the corresponding values of the 
objective functions is called the Pareto optimal front (POF) or 
simply, the Pareto front. Some advanced Pareto-based 
evolutionary methods are as follows: 

 

- niched Pareto genetic algorithm [44] 
- non-dominated sorting genetic algorithm [45] 
- SPEA [41] 

 

The SPEA integrates established techniques used in the 
existing Pareto-based EAs in a single unique algorithm. Its 
convergence to the Pareto optimal front and preserving the 
population diversity are its advantages over other EAs [41]. 

A. SPEA 
A flowchart of the approach including the following major 
steps is presented in Fig. 1 [41]: 
SPEA: 

1. generating an initial population P and creating the 
empty external non-dominated set P′; 

2. pasting non-dominated members of P into P′; 
3. removing all solutions within P′, which are covered 

by any other members of P′; 
4. pruning P′ by clustering if the number of externally 

stored non-dominated solutions exceeds a given 
maximum N′; 

5. calculating the fitness of all individuals in P and P′; 
6. using binary tournament selection with replacement 

and selecting individuals from P and P′ until the 
mating pool is filled; 

7. applying crossover and mutation operators; 
8. stopping if the maximum number of generations is 

reached, and repeating step 2, otherwise. 
Fitness assignment is performed using the two following 
steps: 

- strength 0 ≤ Si <1, which is equal to the following 
value, is considered for every individual (i) of P′:  =  + 1																																					(3) 

where N is the size of P, and n is the number of individuals in 
P dominated by individual (i) of P′. The fitness of (i) is equal 
to Si. 

- Fitness (fj) is equal to the following value for every 
individual (j) of P:  = 1 +  ,	 											where	 	ϵ	[1, )													(4) 

Small fitness values correspond to high reproduction 
probabilities. Hence, 1 is added to sum up the strengths of P′ 
individuals that dominate j. The members of P′ have better 
fitness than the members of P. 

 

 

Fig. 1. Optimization flowchart of the strength Pareto. 
 
The major point of clustering is that the point with a 

minimal average distance to all other points in a cluster is 
considered the representative for that cluster [41]. 

 

III. FRACTIONAL SYSTEMS 
A. Fractional Calculus 

Fractional-order systems are characterized by the 
fractional-order differential equations. Fractional calculus 
considers any real number for derivatives and integrals. The 
FOPID controller is the expansion of the conventional 
integer-order PID controller based on fractional calculus.  

Fractional calculus is a branch of mathematics that deals 
with real number powers of differential or integral operators. 
The following definition, which was proposed by Riemann 
and Liouville, is the most common among all the different 
definitions [46]: 
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where Γ(∙) is the well-known Euler’s gamma function. 
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B. Approximation of the Fractional-Order Derivative and 
Integral 

The functions used in this section provide an integer-order 
frequency-domain approximation of transfer functions that 
involve the fractional powers of s. 
The following equation is obtained for the frequency-domain 
transfer function C(s) given by Eq. (7) as follows: 

ÂÎ= nvKssC )(             (7)                                  

Crone is a well-known continuous approximation approach. 
Crone is a French acronym that means “robust 
fractional-order control.” This approximation implements a 
recursive distribution of N zeros and N poles, which leads to 
a transfer function as Eq. (8): 

                                            (8) 

 
 

where K′ is an adjusted gain so that both Eqs. (7) and (8) have 
a unit gain at 1 rad/s. Zeros and poles have to be over a 
frequency domain [wl;wh] with a valid approximation. These 
zeros and poles are given for a positive v by Eqs. (9)–(11) as 
follows: 

1z lw w h=                  (9)                                                       

, 1 1...pn z n n Nw w a-= =       (10)                   

, 1 2...zn p n n Nw w h-= =        (11)                   

where α and η are calculated according to Eqs. (12) and (13). 
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The roles of zeros and poles are swapped for negative v 
values. The number of poles and zeros is initially selected. 
The desired performance of this approximation depends on 
the order N. A simple approximation is provided with a 
lower-order N, which causes ripples in both gain and phase 
characteristics. The approximation is not satisfactory when 
|v| > 1. The fractional-order v is usually separated as Eq. (14). 
Moreover, only the first term sv needs to be approximated. 

]1,0[,,, ÎÂÎ+== bbb nnvsss nv    (14) 

C. Fractional PID Controller 
Researchers found that controllers, which use 

fractional-order derivatives and integrals, achieve better 
performance and robustness than conventional integer-order  

 
Fig. 2. Boost converter. 

TABLE I 
CIRCUIT PARAMETERS OF THE BOOST CONVERTER 

Parameter Value 
Capacitor 1056 μF 
Inductor 250 μH 

Load 25 Ω 
ESR of capacitor 30 m Ω 
ESR of inductor 10 m Ω 

 

controllers [47]. The FOPID controller is more flexible and 
provides an opportunity for a better adjustment of the 
dynamical characteristics of the control system. 
The FOPID controller, which is proposed by Podlubny in 
1999, is the expansion of the conventional PID controller 
based on fractional calculus [48],[49]. 

The general form of the FOPID controller is PIαDβ. Its 
general transfer function is given by Eq. (15) as follows: 

( )c p i dG s K K S K Sa b-= + +          (15)                       

Aside from selecting Kp, Ki, and Kd, this controller needs to 
select α and β, which are not necessarily integer numbers [50], 
[51]. 

 

IV. PID CONTROLLER FOR BOOST CONVERTER 
The studied DC–DC converter (Fig. 2) is a boost converter 

with a switching frequency equal to 15 kHz that converts a 5 V 
input supply to a 12 V output. Table I presents the prototype 
circuit parameters. The parameters are similar to those used in 
Ref. [24] for easy comparison of results. The standard 
state-space averaging technique is usually used to obtain the 
output-to-control small-signal transfer function. However, the 
controller design based on this mathematical model cannot 
provide the best performance because of a significant model 
error. Ref. [24] proposed a transfer function for the studied 
boost converter based on the measured experimental 
frequency response. This transfer function [Eq. (16)] is 
referred to in this part because it is more accurate than the 
theoretical one. The frequency response of the transfer 
function is presented in Fig. 3(a). ()()= −5.6956 × 10 − 2.5589 × 10 + 4.9831 × 10 + 8.2525 × 10 + 5.4241 × 10 			(16) 
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(a) 

 
(b) 

Fig. 3. Frequency response of the boost converter: (a) open and 
(b) closed loops [24]. 
 

 
Fig. 4. Start-up response of the boost converter with the PID 
controller proposed in Ref. [24]. 

 
The PID controller designed based on the measured 

small-signal model in Eq. (16) is presented in Eq. (17) as 
follows: () = 0.567 + 134.13 + 1.98 × 10													(17) 

The Bode plot of the PID-compensated boost converter is 
illustrated in Fig. 3(b). The gain crossover frequency of the 
PID-compensated system is approximately 290 Hz, while the 
phase margin is 50°. The start-up response obtained using this 
PID controller is presented in Fig. 4. The settling time is 
0.019 s, while the overshoot is 18%. Neither of the two 
values is satisfactory. 

 

V. PID CONTROLLER OPTIMIZATION 
The flowchart in Fig. 1 is used to optimize the PID 

controller. Table 2 presents the optimization parameters. The 
program is conducted using m-file in MATLAB. The 
objective functions are calculated in SIMULINK using the 
details of the system. Consequently, this method reduces the 
approximation error in the mathematical model. The 
parameters are sent to the SIMULINK environment so each  

TABLE II  
SPECIFICATIONS OF THE EVOLUTIONARY ALGORITHMS 

Parameter SPEA 
Iteration 25 

Population size 30 
Chromosome coding Real-code 

External non-dominated set 
size 

30 

Selection Roulette wheel 

Recombination 
 Single-point crossover, with 

probability of 0.7 

Mutation 
 Discrete, with probability of 

1/variables 
 

 
Fig. 5. Pareto set (i.e., PID coefficients). 

 
member of each generation obtains the objective functions. 
The values of the objective functions are returned to the 
program after the simulation running time is finished. 

The SPEA algorithm runs until the stop condition is 
satisfied. The members of P′ in the last iteration are the 
optimized parameters. 

A. Large-Signal Response Optimization 
The program used to optimize the large-signal response 

(i.e., start-up response) with the PID gains (i.e., Kp, Ki, and Kd) 
as design variables generates a set of optimal gains called the 
Pareto set (Fig. 5 and Table III). The Pareto set corresponds 
to a set of optimal results for the objective functions called 
the Pareto front (Fig. 6). 
The cost functions for this optimization are as follows: 

F1 = Overshoot = 	  100% 

F2 = Settling time =   {: () < 1.5%} 
where y is the output voltage, and e is the tracking error in 
percent. The desired output is 12 V. 

A designer can easily select any of the results based on 
their features and his/her own engineering view. Some results 
are given in Fig. 7. Some have low overshoot but high 
settling time, whereas others have low settling time but high 
overshoot. The fastest among these optimal responses 
provides an 8.4 ms settling time and causes a high overshoot  
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Fig. 6. Pareto front. 

 

TABLE III 
PARETO SET (I.E., PID CONTROLLER COEFFICIENTS) AND PARETO 

FRONT (I.E., SETTLING TIME AND OVERSHOOT) 

Point Kp Ki Kd 
Setting 

time 
(Sec.) 

Overshoot 
(Percent) 

1 0.9743 64.9645 0.0018 0.0294 5.7608 
2 1.0953 71.2187 0.0017 0.0291 6.0208 
3 0.4717 139.6785 0.0018 0.0143 16.34 
4 0.4786 117.5642 0.0016 0.0146 14.495 
5 1.0388 71.2187 0.0017 0.0279 6.5633 
6 0.4812 153.1965 0.001 0.0105 20.96 
7 1.0388 84.0616 0.0015 0.0236 7.9158 
8 1.0388 71.2187 0.0015 0.0245 7.595 
9 0.4812 87.9465 0.001 0.0153 11.4933 

10 0.4717 139.6785 0.001 0.0117 17.805 
11 1.0374 68.1873 0.001 0.0084 27.4358 
12 1.0388 50.9062 0.0018 0.0305 4.6625 
13 0.5686 69.3299 0.001 0.0174 8.3858 
14 0.4786 123.4201 0.001 0.0122 16.7625 

 

 
of 27.4%. However, these values are all optimum in the sense 
of the Pareto optimality criterion. 

Aside from the large-signal behavior, small-signal 
response is also important. Hence, the dynamic behavior of 
the output voltage to the step change of the input supply for 
one of these optimal PID gains is evaluated. The satisfactory 
dynamic response is depicted in Fig. 8. Taking the dynamic 
response characteristics as additional objective function(s) is 
also possible. Accordingly, both large- and small-signal 
responses are optimized at the same time using a simple PID 
controller. This optimization is discussed in the next section. 

Some interesting information, which helps in creating an 
efficient design, is obtained from the Pareto front. 
Accordingly, a jump on the Pareto front is important. For 
example, that the two points cause a nearly identical 
overshoot (around 8%) is determined by comparing the two 
points marked in the Pareto front (Fig. 9). However, the 
lower point provides nearly a 50% faster settling time. Hence, 
from the practical point of view, the lower point provides 
better results if the overshoot is acceptable. 
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(e) 

Fig. 7. Some start-up responses selected from the Pareto front 
(Table 3): (a), (b), (c), (d), and (e) correspond to points 5, 13, 9, 
14, and 11, respectively. 
 

 
Fig. 8. Small-signal behavior of the converter with the 
Pareto-based PID controller when a change occurs in the 5 V to 
6 V input voltage (i.e., the PID gains are based on point 13 in 
Table III). 
 

 
Fig. 9. Comparison of two different points of the Pareto front. 
 

B. Large and Dynamic Response Optimization 
Dynamic response and large signal are important for some 

applications. The dynamic response is added as an additional 
objective function to the previous optimization process. In 
addition to the large signal, the small-signal response of the 

 
Fig. 10. One of the dynamic response optimization results in 
addition to the large-signal optimization selected according to the 
design requirements (point 8 in Table IV). 
 
 

 
Fig. 11. Pareto front. 
 
converter to a 20% increase in the input voltage at 0.15 s is 
defined as an optimization objective. The Pareto set and the 
Pareto front obtained from the optimization are presented in 
Table IV. The cost functions in this part are as follows: 

F1: Overshoot = 	  100% 

F2: Settling time =   {: () < 1.5%} 
F3: Dynamic overshoot = 

 	( 	.) 100% 

One set of the PID coefficients suggested by Table 4 is 
selected according to the required features of the converter 
output response. The PID coefficient is Kp = 0.6509, 
Ki =75.1074, and Kd = 0.0021 if the start-up overshoot, 
settling time, and dynamic overshoot must be below 15%, 
0.03 s, 1.5%, respectively. This response is depicted in Fig. 
10. 

C. Large-signal Response Optimization with More 
Variables 

The dynamic response is not considered an optimization 
objective in this program. However, these results also obtain 
satisfactory dynamic responses. The output voltage has a 
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TABLE IV  
PARETO SET (I.E., PID COEFFICIENTS) AND PARETO FRONT  

(I.E., SETTLING TIME, OVERSHOOT, AND DYNAMIC RESPONSE) 

Point KP KI KD 
Overshoot 
(Percent) 

Setting time 
(Sec.) 

Dynamic Overshoot 
(Percent) 

1 1.1395 56.6066 0.0048 6.0458 0.0375 2.5300 
2 0.9489 126.1336 0.0033 9.8292 0.0239 2.1967 
3 0.7388 143.3492 0.0026 14.3117 0.0168 2.2483 
4 0.9256 107.6074 0.0021 30.8883 0.0157 0.8550 
5 0.9489 143.3492 0.0026 22.3808 0.0164 1.8292 
6 0.9256 107.6077 0.0041 8.3525 0.0286 3.1175 
7 1.1395 56.6066 0.0026 26.7425 0.0196 1.8050 
8 0.6509 75.1074 0.0021 10.9208 0.0226 1.0808 
9 0.9256 97.5122 0.0026 18.4042 0.0192 1.9500 

10 1.1395 143.3495 0.0026 30.7592 0.0154 1.7667 
11 0.6509 158.6336 0.0046 137292 0.0386 0.3817 
12 0.9489 75.0995 0.0021 30.8883 0.0164 0.8008 
13 0.9653 126.1336 0.0033 9.7792 0.0239 2.3400 
14 1.1395 56.6066 0.0044 5.9058 0.0374 2.9375 
15 0.9653 75.1074 0.0023 26.8317 0.0207 1.1683 

 

TABLE V 
PARETO SET (I.E., PID COEFFICIENTS AND MAX AND MIN OF THE HARD LIMITER) AND  

PARETO FRONT (I.E., SETTLING TIME AND OVERSHOOT) 
 

Point KP KI KD Min Max Overshoot 
(Percent) 

Setting time 
(Sec.) 

1 1.4365 68.9257 0.0010 0.0117 0.6685 1.3200 0.0017 
2 1.4681 32.7811 0.0036 0.1327 0.6892 0.4058 0.0018 
3 1.5161 51.6227 0.0047 0.1340 0.7276 0.3075 0.0025 
4 1.5817 51.6227 0.0053 0.1340 0.6989 0.1675 0.0058 
5 1.4192 51.6227 0.0047 0.1340 0.6727 0.0000 0.0069 

 
TABLE VI 

PARETO SET (I.E., PID COEFFICIENTS AND MAX AND MIN OF THE HARD LIMITER) AND  
PARETO FRONT (I.E., SETTLING TIME, OVERSHOOT, AND SWITCHING STABILITY) 

Point KP KI KD Min Max Overshoot 
(Percent) 

Setting time 
(Sec.) 

Jp2 e5 

1 0.4000 50.9884 0.0032 0.0471 0.6093 0.5683 0.0207 0.0000 
2 1.0120 51.1002 0.0041 0.0425 0.6093 0.2733 0.0264 0.0002 
3 0.4576 75.1674 0.0032 0.0425 0. 6093 1.4646 0.0154 0.0004 
4 0.4168 46.2172 0.0047 0.1748 0. 6093 1.3550 0.0064 0.0005 
5 1.0534 75.0531 0.0032 0.0471 0. 6093 0.8933 0.0136 0.0025 
6 0.6496 56.5743 0.0039 0.0425 0. 6093 0.2983 0.0220 0.0078 
7 1.6480 84.6851 0.0025 0.0228 0.0228 0.7166 0.0092 0.4391 
8 1.0116 43.1117 0.0041 0.1591 0.1591 1.4591 0.0040 0.9911 
9 1.1076 60.1767 0.0024 0.1231 0.1231 1.4583 0.0018 1.0569 

10 1.1347 67.2025 0.0015 0.0463 0.0463 0.8875 0.0079 1.1385 
11 1.1346 41.4555 0.0032 0.1214 0.1214 0.6925 0.0033 1.2439 
12 1.6778 67.2918 0.0043 0.1216 0.1216 1.5750 0.0017 1.4098 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 12. Responses of the Pareto front with the max and min hard 
limiter and the PID controller coefficients as optimization 
variables. 
 

 
Fig. 13. Small-signal behavior of the converter with the 
Pareto-based PID controller (max and min of the hard limiter 
optimization in addition to PID coefficients) when a step change 
from 5 V to 6 V occurs in the input voltage at 0.05 s. 
 
negligible overshoot when a 20% step increase in the input 
voltage occurs at 0.05 s (Fig. 13). 

The max and min bounds of the hard limiter used to limit 
the duty cycle are added to the optimization variables, 
whereas the cost functions remain the same to improve the 
large-signal response. Table V and Fig. 11 present the Pareto 
set and the Pareto front for this optimization program. The 
start-up response of these results is given in Fig. 12 to 
illustrate the significant improvement achieved using this 
optimization. All the points on the POF in Fig. 11 dominate 
the points on the POF in Fig. 6. 

D. Switching Stability and Large-Signal Optimization 
The frequency of the output voltage ripples is less than the 

pulse-width modulation (PWM) generator signal (Fig. 14). 
The frequency can even be non-periodic. This phenomenon is 
called chaos. 

This problem is solved by considering the switching 
stability as an optimization objective in addition to the 
settling time and overshoot of the large-signal response. The 
sum of the errors between every two successive points of 
error signal sampled synchronized with the PWM clock at a  
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(a) 

 
(b) 

Fig. 14. Chaotic behavior in the steady-state response of the 
waveform depicted in Fig. 10. (a) Chaos behavior. (b) Phase plot. 

 
steady state must tend to zero to improve the chaotic behavior. 

The cost functions are as follows: 
F1: Overshoot = 	  100% 

F2: Settling time =   {: () < 1.5%} 
F3: Jp2 = ∑ | − | ) × 100,000 

where ei is the error signal at the ith switching instance. 
Table VI presents the Pareto set and the Pareto front 

obtained from this optimization. 
Chaos has completely been removed for the first point in 

Table VI (Jp2 = 0.0000). This response is illustrated in Fig. 15. 
The dynamic response of this point is satisfactory while a 
load change of 100% is applied to the system (Fig. 16). 
Moreover, the system keeps switching stability after the 
dynamic response. 

E. Start-up Optimization for Various Operating Points 
Both poles and the right-half-plane zero of the boost 

converter depend on the steady-state duty cycle. Therefore, 
the Bode plots for various operating points exhibit a 
significant variation. A classical PID controller designed 
based on the frequency response may not respond well to the 
significant changes in the operating point [24]. 
The optimization in the previous parts was performed for the 
nominal operating point. The optimization was conducted for 
several system operating points to make the system robust for 
different voltage references. The design variables, PID 

 
(a) 

 
(b) 

Fig. 15. Chaos rejection for the (a) large-signal response and the 
first point of Table 6, (b) phase plot. 
 

 
Fig. 16. Chaotic behavior before and after the 100% load 
increase (at 0.2 s) for the first point in Table VI. 
 
parameters, and objective functions are considered to have 
the worst start-up response overshoot and settling time. The 
reference voltage is equal to 10, 11, 12, 13, and 14 V. Table 
VII presents the results of this optimization. The minimum of 
the hard limiter is set to zero, while the maximum is set 
proportional to the reference voltage to obtain these results 
(i.e., maximum of hard limiter = 0.058 * reference voltage). 
The ratio is estimated using the results in Table V. 

Point one of the Pareto front is presented in Fig. 17. This 
point provides a fast start-up response for a wide range of 
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Fig. 17. Optimized start-up response for five different references 
(point 1 in Table VII). 
 

TABLE VII 
PARETO SET (I.E., PID COEFFICIENTS) AND PARETO FRONT (I.E., 

WORST SETTLING TIME AND OVERSHOOT FOR VARIOUS 
OPERATING POINTS) 

Point Kp Ki Kd 
Setting 

time 
(Sec.) 

Overshoot 
(Percent) 

1 1.7 93.7726 0.0016 0.0048 1.3 
2 1.959 96.4222 0.0023 0.0075 0.82 
3 1.959 96.4222 0.0024 0.0088 0.78 
4 1.959 96.4222 0.003 0.0125 0.73 
5 1.5638 79.0163 0.0028 0.0145 0.69 
6 1.9816 94.8275 0.0035 0.0147 0.46 

 
references with nearly no overshoot. A high robustness is 
achieved using the SPEA algorithm. Similarly, the effect of 
other disturbance sources in the load and input voltage is 
considered. 
 

VI. OPTIMIZATION OF FRACTIONAL ORDER PID 
CONTROLLER 

A. Design Parameter and Objective Functions 

Five parameters should be designed for the FOPID 
controller according to the control objectives. The initial 
members of the first population are represented by 
5-dimension vectors. These initial values are randomly 
generated in the defined range. 

The optimization stop criterion is based on the maximum 
number of generations to be produced. Accordingly, 100 
generations are used in this paper. 
The Crone approximation with an order of 5 and a frequency 
range equal to [0.01; 1000000] rad/s for FOPID controller is 
used. 

B. Optimization of Start-Up Response 

This optimization uses the FOPID coefficients as the 
design variables. The objective functions are as follows: 

 
(a) 

 
(b) 

Fig. 18. Start-up response for results of the Pareto front in Table 
8: points (a) 1 and (b) 2. 

 
F1: Overshoot = Max y 
F2: Settling time = Min t, where error < 1.5%  = 12 − 12 100% 

where y is the DC output voltage of the boost converter. Table 
8 shows the results of the SPEA program. 

The results (Table VIII) show that the fractionality of the 
derivation and integration parts of the optimum results is very 
low but has a significant effect. The start-up responses for 
these results are presented in Fig. 18. These simulation results 
verify the effectiveness of the tuning strategy proposed in this 
part. 

The Pareto optimization is a useful tool for preference 
evaluation and parameter selection in the design of power 
converters. From an engineering perspective, the goal of the 
optimization is finding the optimal solution, gaining insight 
on the system properties being designed, and visualizing the 
trade-off between them. 

C. Optimization of Start-Up and Dynamic Responses 

Aside from the characteristics of the start-up response, the 
dynamic response is also considered an objective function in 
this section. The dynamic response is defined as follows: 

F3: Dynamic overshoot = Max y after t = 0.2 s. 
where the input voltage has a step change from 5 V to 6 V at 
0.2 s. Table IX  presents the results of this optimization. 

The fractionality of the results in Table IX is notably 
higher than that in Table 8. The designer can design the 
FOPID controller according to point 5 in Table IX if he/she  
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TABLE VIII  
PARETO SET AND PARETO FRONT FOR THE FOPID CONTROLLER AND OPTIMIZATION  

OF THE START-UP RESPONSE OVERSHOOT AND SETTLING TIME 

Point KP KI KD   Overshoot 
(Percent) 

Setting time 
(Sec.) 

1 1.5885 40.8865 0.0015 0.9048 0.99999 0.535 0.0017 
2 1.4244 40.8731 0.0015 0.9048 0.99999 0.0000 0.0035 

 

TABLE IX 
PARETO SET AND PARETO FRONT FOR FOPID CONTROLLER, OPTIMIZATION OF  

START-UP OVERSHOOT, SETTLING TIME, AND DYNAMIC RESPONSE 

Point Kp Ki Kd   Overshoot 
(Percent) 

Setting time 
(Sec.) 

Dynamic overshoot 
(Percent) 

1 1.4052 39.3011 0.0050 0.9322 0.7228 12.6483 0.0529 1.6458 
2 0.6963 78.5440 0.0052 0.8502 0.8319 62.8625 0.0466 0.9483 
3 1.1933 62.3019 0.0038 0.9792 0.9118 0.0558 0.0109 2.5742 
4 1.6808 82.0184 0.0049 0.9658 0.8530 2.2417 0.0122 1.7692 
5 0.8956 40.3368 0.0038 0.8616 0.8007 78.9633 0.0917 0.7950 
6 0.6607 31.8860 0.0042 0.8512 0.7656 60.1817 0.0684 1.0242 
7 1.4406 85.0000 0.0033 0.9848 0.7098 17.7683 0.0209 1.4842 
8 1.4052 39.3011 0.0050 0.9322 0.7098 12.6483 0.0543 1.6075 
9 0.6607 31.8851 0.0042 0.8544 0.8545 41.4792 0.0343 1.0492 

 

TABLE X 
PARETO SET AND PARETO FRONT FOR THE FOPID CONTROLLER, OPTIMIZATION OF START-UP OVERSHOOT,  

SETTLING TIME, AND DYNAMIC RESPONSE, MAXIMUM BANDWIDTH WH OF 40,000 RAD/S 

Point KP KI KD   Overshoot 
(Percent) 

Setting time 
(Sec.) 

1 0.1000 16.4459 0.0007 0.8938 0.999999 0.5200 0.0017 
2 0.1000 16.4459 0.0007 0.9157 0.999999 0.0000 0.004 

 

 
(a) 

 
(b) 

Fig. 19. Start-up and dynamic responses for point 5 in Table 9. 
Dynamic response is for a step change in the input voltage from 
5 V to 6 V at t = 0.2 s: (a) start-up and (b) dynamic responses. 

 
Fig. 20. Start-up and dynamic responses for point 3 in Table IX. 
Dynamic response is for a step change in the input voltage from 
5 V to 6 V at t = 0.2 s. 
 
selects the dynamic response as his/her first priority. This 
response is presented in Fig. 19. Point 3 in Table IX can be 
chosen if the start-up response has a higher priority 
considering a compromise between the start-up and the 
dynamic responses as the objective functions. This response 
is illustrated in Fig. 20. 

The bandwidth of the FOPID controller is changed in this 
part. This change in the bandwidth ensures that the controller 
works within a large bandwidth. The other parameters (i.e., 
Kp, Ki, Kd, α, and β) need to be optimized again when the  
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(a) 

 
(b) 

Fig. 21. Start-up response of the results in Table 10: points (a) 1 
and (b) 2. 

 

 
Fig. 22. Comparison of the Pareto fronts for the integer-order 
PID and FOPID controllers (optimization of the start-up response 
overshoot and settling time). 

 
bandwidth is changed. Furthermore, a new optimization is 
conducted for the [0.01; 40,000] rad/s bandwidth. Table 10 
shows the optimization results for a bandwidth within [0.01; 
40,000] rad/s. The start-up response of these results is 
presented in Fig. 21. 
 

VII. COMPARISON OF INTEGER-ORDER PID AND 
FOPID CONTROLLERS 

This section presents a comparison of the results of 
multi-objective optimization for the FOPID and integer-order 
PID controllers. 

A. Comparison of Pareto front for Start-Up Response 
The Pareto front of the start-up response overshoot and the 

settling time optimization for the integer-order PID and 
FOPID controllers is presented in Fig. 22. 
The FOPID controller provides a much better start-up 
response (Fig. 22). 

B. Comparison of the Pareto Front for Dynamic and 
Start-Up Responses 

A comparison of Tables IV and IX clearly indicates that 
the FOPID controller provides much better results when both 
the start-up and the dynamic responses are objective 
functions with the start-up response as the first priority. 

 

VIII. EXPERIMENTAL VERIFICATION 
The proposed PID and FOPID controller coefficients are 
validated on a boost converter prototype. The passive 
components and the other converter parameters are similar to 
those mentioned in Section IV. The discrete control scheme is 
implemented on a F2812 DSP for the integer-order PID 
controller and a dSPACE 1104 for the FOPID controller. 

A. Large-Signal Response 
The experimental results of the start-up response for some 

points in Table III are illustrated in Fig. 23. Accordingly, the 
experimental results are quite close to the corresponding 
simulation results. The overshoot clearly increases from 7.5% 
to 30% when the settling time is reduced from 25 ms to 8 ms. 
One objective function becomes more desirable than the 
others by scrolling on the Pareto front. All these results are 
considered optimum, and any other PID coefficients cannot 
be found on the same conditions, which results in a faster 
settling time and a lower overshoot than the others. 

B. Large-Signal Response with More Optimization 
Variables 

The simulation results of the optimization of start-up 
response overshoot and settling time, with the PID 
coefficients and max–min of hard limiter as design variables, 
have very close overshoots to each other. Given that the 
difference between them is not significant, for only one point 
of Table V, the start-up response is shown in Fig. 24. A 
numerical comparison of the experimental and simulation 
results of start-up response is presented in Table XI. 

B. Chaos Rejection 
The experimental results for the chaotic behavior of the 

boost converter are presented in Figs. 25 and 26. The chaotic 
behavior of the boost converter for point 12 in Table VI is 
illustrated in Fig. 25. The same behavior obtained based on 
point 1 in Table VI shows 100% chaos rejection (Fig. 26). 
The chaotic behavior is completely removed if other 
objective functions are not as important as the switching 
stability. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 23. Start-up response for some points selected from Pareto 
front (Table III): (a), (b), (c), (d), (e) correspond to points 5, 13, 
9, 14, 11 respectively. 

 
Fig. 24. Start-up response for point 3 in Table V. 
 

 
Fig. 25. Chaotic behavior of the output voltage for the boost 
converter (point 12 in Table VI). 
 
 

 
Fig. 26. Rejection of the chaotic behavior for the boost converter 
(point 1 in Table VI). 
 

D. Large-Signal Response with FOPID Controller 

The order of the Crone approximation is 5 for the 
experimental implementation of the FOPID controller. 
Furthermore, the bandwidth with a valid approximation is 
[0.01; 40,000] rad/s. Table 12 shows the experimental results, 
while Fig. 27 presents the start-up waveforms. A comparison 
of Tables 10 and 12 shows that the experimental results 
effectively confirm the theoretical results. 
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TABLE XI 
COMPARISON OF THE EXPERIMENTAL AND THE SIMULATION RESULTS 

Simulation results Experimental results 
Table Point Settling time (s) Overshoot (%) Settling time (s) Overshoot (%) 

3 5 0.0279 6.5633 0.0252 7.5 
3 13 0.0174 8.3858 0.0165 9.1 
3 9 0.0153 11.4933 0.0152 11.7 
3 14 0.0122 16.7625 0.0120 18.3 
3 11 0.0084 27.4358 0.0076 29.1 
5 3 0.0025 0.3075 0.0021 0.8 

 

TABLE XII 
EXPERIMENTAL RESULTS FOR THE FOPID CONTROLLER 

Point KP KI KD   Overshoot (Percent) Setting time (Sec.) 
1 0.1000 16.4459 0.0007 0.8938 0.999999 0.5200 0.002 
2 0.1000 16.4459 0.0007 0.9157 0.999999 0.0000 0.004 

 
 

 
(a) 

 
(b) 

Fig. 27. Start-up response for the results of Table X: points (a) 
1 and (b) 2. 
 

IX. CONCLUSION 
This study simultaneously optimizes some important 

features of the boost converter. These features include the 

large-signal response overshoot and settling time, dynamic 
response, and switching stability. The SPEA is used to 
improve these features. A designer can easily choose any of 
the results based on their features and his/her own engineering 
view with the help of the Pareto sets and fronts obtained in this 
paper. SPEA multi-objective optimization is employed to 
overcome the difficulties of designing the FOPID controller in 
the second part of the paper. The optimized FOPID controller 
exhibits a good dynamic response and an excellent start-up 
response. The extensive simulation results verify that the 
tuning of the PID and FOPID controllers with the use of the 
SPEA multi-objective approach is highly effective, rejects 
chaotic behavior, and provides robustness against change in 
the operating point. Moreover, the experimental results 
validate the theoretical results that were presented and 
discussed. 
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