• 제목/요약/키워드: PID controller PID

검색결과 1,741건 처리시간 0.028초

정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계 (Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control)

  • 오성권;조세희;이승주
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

Design of a PID type Fuzzy Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.189-193
    • /
    • 1998
  • A PID type fuzzy Controller is proposed based on a crisp type model in which the consequent parts of the fuzzy control rules are functional representation or real numbers. Using the conventional PID control theory, a new PID type fuzzy controller is developed, which retains the characteristics of the conventional PID controller. An advantage of this approach, is that it simplifies the complicated defuzzification algorithm which could be time consuming. Computer simulation results have shown that the proposed PID fuzzy controller has satisfactory tracking performance.

  • PDF

불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계 (Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties)

  • 신영주
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control)

  • 김상민;한우용;이창구;이공희;임정흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

예측제어기법을 이용한 PID 제어기 설계 (The PID Controller for Predictive control Algorithm)

  • 김양환;이정재;이정용;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller which has similar features to the model-based predictive controller. A PID type control structure is defined, which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are precalculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with the conventional PID and fuzzy control algorithms.

신경망-관리 제어기를 이용한 PID 제어 시스템의 강인제어 (Robust control of PID control system using Neural network-Supervisory controller)

  • 지봉철;최석호;박왈서;유인호;조현섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.791-793
    • /
    • 1999
  • In this paper, neural network-supervisory control method is proposed to minimize the effect of system uncertainty by load change and disturbance in the PID control system. In the proposed method, PID controller performs main control action by performing control within constraint error. And neural network-supervisory controller performs control action when error reaches the boundary of constraint error. Combining neural network-supervisory controller to guarantee the stability into PID control system, the resulting PID control system is expected to show better performance in the system with load change and disturbance. Simulation applying PID controller and neural network-supervisory controller showed excellence of proposed method.

  • PDF

PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어 (Real-Time Control of Variable Load DC Servo Motor Using PID-Learning Controller)

  • 정인석;홍성우;김낙교;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.782-784
    • /
    • 1999
  • This paper deals with speed control of DC-servo motor using a Back-Propagation(BP) Learning Algorism and a PID controller Conventionally in the industrial control, PID controller has been used. But the PID controller produced suitable parameter of each system and also variable of PID controller should be changed enviroment, disturbance, load. So this paper revealed for experimental, a neural network and a PID controller combined system using developed speed characters of a Variable Load DC-servo motor. The parameters of the plant are determined by neural network perform on on-line system after training the neural network on off-line system.

  • PDF

센서 잡음 저감도 및 안정-강인성을 고려한 PID-PD 제어기의 최적 동조 (Optimum Tuning of PID-PD Controller considering Robust Stability and Sensor Noise Insensitivity)

  • 김창현;임동균;서병설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.628-631
    • /
    • 2005
  • In this paper, we propose tuning method of PID-PD controller to satisfy design specifications in frequency domain as well as time domain. The proposed tuning method of PID-PD controller that consist of the convex set of PID and PI-PD controller controls the closed-loop response to locate between the step responses, and Bode magnitudes of closed-loop transfer functions controlled by PID and PI-PD controller. The controller is designed by the optimum tuning method to minimize the proposed specific cost function subject to sensor noise insensitivity and robust stability. Its effectiveness is examined by the case study and analysis.

  • PDF

강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어 (Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control)

  • 최진태;김인수;이영진;김종식;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

면역 피드백 메카니즘에 기초한 비선형 PID 제어기 설계 (Design of Nonlinear PID Controller Based on Immune Feedback Mechanism)

  • 박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.134-141
    • /
    • 2003
  • PID controllers with constant gains have been widely used in various control systems due to its powerful performance and easy implementation. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a nonlinear variable PR controller with immune feedback mechanism. An immune feedback mechanism is based on the functioning of biological T-cells, they include both an active term, which controls response speed. and an inhibitive term, which controls stabilization effect. Therefore, the proposed nonlinear PID controller is based on immune responses of biological. immune feedback mechanism which is the cell mediated immunity and In order to choose the optimal nonlinear PID controller games, we also propose the tuning algorithm of nonlinear function parameter in immune feedback mechanism. To verify performance of the proposed algorithm, the speed control of nonlinear DC motor are performed. Front the simulation results, we have found that the proposed algorithm is more superior to the conventional constant fain PID controller.