• Title/Summary/Keyword: PID control gain

Search Result 268, Processing Time 0.025 seconds

A Study on High Precision Temperature Control of an Oil Cooler for Machine Tools Using Hot-gas Bypass Method

  • Jung, Young-Mi;Byun, Jong-Yeong;Yoon, Jung-In;Jeong, Seok-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1003-1011
    • /
    • 2009
  • This study aims at precise control of oil outlet temperature in the oil cooler system of machine tools for enhancement of working speed and processing accuracy. PID control logic is adopted to obtain desired oil outlet temperature of the oil cooler system with hot-gas bypass method. We showed that the gains of PID controller could be easily determined by using gain tuning methods to get the gain of PID controller without any mathematical model. We also investigated various gain tuning methods to design the gains of PID and compared each control performance for selecting the optimal tuning method on the hot gas bypass method through experiments. Moreover, we confirmed excellent control performance with proposed PI controller gain even though disturbances were abruptly added to the experimental system.

A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory (퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구)

  • Jeon, Ma-Ro;Kim, Hee-Su;Kim, Jae-Hak;Kim, Su-Jeong;Song, Soon-Seok;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.

Fuzzy gain scheduling for the gain tuning of PID controller and its application (PID 제어기의 게인 조절을 위한 퍼지 게인 스케쥴링 기법 및 응용)

  • 전재홍;이진국;김병화;안현식;김도현
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.60-67
    • /
    • 1998
  • In this paper, a gain scheduling method of PID controller is proposed using fuzzy logic for balancing control of an inverted pendulum. First, gains of PID controller are calculated using pole-placement technique for the linearized model of an inverted pendulum and these gains are modified by fuzzy logic throughout control operations. A PD controller is used by switching near the set-point to improve the performance. It is illustrated by simulations that the proposed hybrid fuzzy control method yidels smaller rising time and overshoot compared to the fixed-gain PID controller or fuzzy logic-based only PID controller.

  • PDF

Fuzzy Scheduling for the PID Gain Tuning (PID 이득 동조를 위한 퍼지 스케줄링)

  • Shin Wee-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.120-125
    • /
    • 2005
  • In this paper, We propose the fuzzy controller for the gain tuning of PID controller The proposed controller doesn't use the crisp output error and rule tables though with a fuzzy inference process in forward fuzzifier, New Fuzzy PID Controller assigns relations and ranges of two variables of PID gain parameters. These new gain parameters are calculated by the fuzzy inference with max-min ranges of Kp and Kd. The Ki parameter is computed automatically between Kp and Kd parameter Is calculated by Ziegler-Nickels tuning rules. Finally we experimented the propose controller by the hydraulic servo motor control system. We can obtained desired results through the good control characteristics.

Design of the Extended PID Self-Tuner (확장된 PID 자기동조기의 설계)

  • 金鍾煥;崔桂根
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.439-444
    • /
    • 1986
  • In this paper the PID-B self-tuner[1] is extended to allow a less abrupt response to set point or plant parameter changes and to control a nonminimum phase plant. The proposed extended PID/ST derived from the direct pole-placement PID/ST is obtained with the Bezout identity as the underlying design method. And its control gains are normalized by the integral control gain. Although the integral control gain is normalized to 1 in our scheme, the so-called "set point and derivative kick" can be avoided sufficiently by normalizing the measurement vector and set point.

  • PDF

In Position control system, the Design of PIDA Controller using Neural Network algorithm with Acceleration control function (위치제어계에서 신경망 알고리즘을 이용하여 가속도 제어기능을 갖는 PIDA 제어기 설계)

  • 최의혁;박광현;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.310-313
    • /
    • 2002
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when the control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an PIDA controller is constructed by Two-Layers Neural Network applying back-propagation(BP) algorithm. Form the result of compute. simulation in the proposed controller, its usefulness is verified.

  • PDF

Optimal Gain Estimation of PID Controller Using Neural Networks (신경망을 이용한 PID 제어기의 최적 이득값 추정)

  • Park, Seong-Wook;Son, Jun-Hyug;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.134-141
    • /
    • 2004
  • Recently, neural network techniques are widely used in adaptive and learning control schemes for production systems. However, in general it takes up a lot of time to learn in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult for the PID gains suitably, lots of researches have been reported with respect of turning schemes of PID gains. A neural network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed neural network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accidents.

Convergence Progress about Applied Gain of PID Controller using Neural Networks (신경망을 이용한 PID 제어기 이득값 적용에 대한 수렴 속도 향상)

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.89-91
    • /
    • 2004
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal is convergence speed progress about applied gain of PID controller using the neural networks.

  • PDF

Speed Control of Marine Diesel Engines Using Fuzzy Gain Scheduling (퍼지 게인 스케줄링을 이용한 선박 디젤기관의 속도 제어)

  • 박승수;이현식;김도응;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.638-645
    • /
    • 2002
  • This paper presents a scheme for integrating PID control, gain scheduling and emerging techniques in the field of artificial intelligence, such as fuzzy logic and genetic algorithms for the speed control of a marine diesel engine. At first, local PID controllers are designed based on a local model obtained at each speed mode, whose parameters are optimally tuned using a real-coded genetic algorithm. Then, fuzzy "if-then" rules combine the local controllers as a consequence part to implement fuzzy gain scheduling. To demonstrate the performance of the proposed fuzzy PID controller on overall operating conditions, a set of simulation works on B'||'&'||'W's 4L80MC diesel engine are carried out.t.

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF