• 제목/요약/키워드: PID제어

검색결과 1,852건 처리시간 0.032초

온실용 간이 자율주행 작업차의 개발 (Development of a Simple Autonomous Vehicle for Greenhouse Works)

  • 이재환;류관희
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.422-428
    • /
    • 1996
  • This study was conducted to developed to develop a simple battery-powered autonomous vehicle for greenhouse works. A steering method using speed difference of two independent driving motors was adopted. DC motor driving circuit, speed control circuit and controller using one-chip microcomputer were constructed. The inputs of controller are rolling of the vehicle and current speed of driving motors. Using these signals, automatic guidance system along furrow was developed. A computer simulation program by the kenematic analysis was developed to find out optimal control algorithm. The results of this study are as follows. 1. Automatic guidance system along the furrow that adopted two independent driving motors and rolling of vehicle was developed. 2. The results of simulation showed that PID control was adequate to automatic guidance system along furrow. 3. Two commercial 12V battery serially connected were able to drive the vehicle on the soil ground for five hours in continuous operation and for four hours in intermittent operation without recharging the battery. 4. The speed range was 0-0.7m/s and the rolling of vehicle could be controlled within $pm5^{\circ}$ range. 5. From a series of tests, developed vehicle was found to be a useful tool for greenhouse works.

  • PDF

MR Brake를 이용한 공압근육매니퓰레이터의 지능제어 (Performance Improvement of Pneumatic Artificial Muscle Manipulators using Magneto-Rheological Brake)

  • 안경관;;안영공
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.572-575
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. In order to realize satisfactory control performance, a variable damper Magneto Rheological Brake (MRB), Is equipped to the Joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

  • PDF

압전액추에이터 정밀 위치 제어 (Precision position control of piezoelectric actuator)

  • 윤소남;김찬용;함영복;조정대;안병규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.531-536
    • /
    • 2005
  • The purpose of this paper is to improve the hysteresis characteristics of a stack type piezoelectric actuator using system identification and tracking control. Recently, several printing methods that cost less and are faster than previous semiconductor processes have been developed for the production of electric paper and RFID. The system proposed in this study prints by spraying the molten metal, and consists of a nozzle, heating furnace, operating actuator, and an XYZ 3-axis stage, As an operating system, the piezoelectric(PZT) method has very valuable uses. However, the PZT actuator has a very big hysteresis characteristic due to the ferroelectric characteristics of the PZT element. This causes problems in the system position control characteristics and deteriorates the performance of the system. In this study, an investigation was conducted to improve the hysteresis characteristics of the PZT actuator that has an output displacement for the input voltage. The study proposed a inverse hysteresis model, a mathematic modeling method that can express the geometric relationship between voltage and displacement, in order to reduce the hysteresis of the PZT actuator. In addition, system identification and PID control methods were examined. Also, it was confirmed that the proposed control strategy gives good precision position control performance.

  • PDF

제어시스템 튜닝에 의한 발전소 효율향상에 관한 연구 (A Study on Efficiency Improvement by Fine Tuning of Power Plant Control)

  • 김호열;김병철;변승현
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1496-1501
    • /
    • 2012
  • A fine tuning on a control system is essential not only for stable operation but also for efficient operation of the power plant. There has been a very few studies on efficiency change by control system tuning. So, it was not clear that if it could be improved or not when the control is stable by fine tuning and how much it could be improved if it works. An accurate algorithm for measurement of the plant efficiency was newly introduced and implemented to measure integrated fuel flow and electricity MW output and to calculate the mean efficiency for given time. As a result, stable operation after fine tuning of control parameters for major controlled variables brought higher efficiency than un-stable operations like a cycling or an oscillation. The plant efficiency has been monitored during various tests and tunings to confirm how much it changes by tuning of the control system on power plant. Now, we can say that the efficiency can be improved in stable operation by fine tuning of the control system.

Laser Interferometer를 이용한 초정밀위치결정 피드백시스템의 컴퓨터 시뮬레이션 및 제어성능 평가 (Computer Simulation and Control performance evaluation for Feedback System of Ultra Precision Positioning by using Laser Interferometer)

  • 김재열;김영석;윤성운;곽이구;한재호;유신
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.68-74
    • /
    • 2001
  • This system is composed of fine and coarse apparatus, measurement system and control system. Piezoelectric actuator is designed for fine positioning. We make a study of precision apparatus that is used in the various industrial machine. The study was carried out to develope a precision positioning apparatus, consisting of servo motor and piezoelectric actuator. Coarse positioning using lead screw is drived by servo motor. Control system output a signal from laser interferometer to amplifier of servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometer. In this study, design method and control system with ultra precision position apparatus are researched. As the first step, we have estimated for control performance and system stability before an actual apparatus is manufactured by MATLAB with SIMULINK including various functions those are composed of pre-design and system modeling.

  • PDF

브러시리스 직류전동기의 정속도 운전을 위한 디지털 PI제어 (The Digital PI Control for Driving Constant Speed of Brushless DC Motor)

  • 윤신용;김현수;김용;김일남;백수현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권6호
    • /
    • pp.395-402
    • /
    • 2000
  • This paper presents the improvement for speed characteristics of a Brushless DC Motor (BLDCM), it was applied to digital PI control for this. The practical PID control has been widely used to velocity control of DC motors. In this paper, a digital PI controller is used in order to decrease the speed error in constant velocity control of BLDCM. A TMS320C31 DSP is used for the microprocessor of digital PI control. The method using the DSP carry out the real-time control. The DSP has the rapid calculation ability and sampling time used lms. Driving BLDCM used 50W, motor input DC 150V and rotation speed 3000rpm. When BLDCM is to approval for discretion velocity at the acceleration and deceleration driving with any load, it was a feasible for stabilization control. Therefore, the experimental results indicate the superiority and validity of the velocity control by digital PI control.

  • PDF

자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발 (Development of Steering Control System based on CAN for Autonomous Tractor System)

  • 서동현;서일환;정선옥;김기대
    • 농업과학연구
    • /
    • 제37권1호
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.

CAN 통신을 이용한 다중 직류 모터 제어기 구현 (An Implementation of the Controller for Multiple DC Motors Using CAN)

  • 김현성;권만오;이건영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.583-585
    • /
    • 1999
  • This paper presents the controller of multiple DC motors using the network. This controller has been built with 16-bits one chip microprocessor (87C196CA) which includes the integrated CAN serial communication and position control for two motors. Since only one microprocessor is needed, the proposed controller is not only cost effective but also powerful. The system is composed of one main controller, trajectory planner, and the other sub controller, position controller. The main controller which has been built using Visual Basic programming on the Pentium PC, generates the trajectory and then transmits it to the sub controller. The trajectory transmitted from the PC will be processed by the sub controller. Two motors are controlled using the conventional position control, PID, to reach them the same target position but with different velocities at the same time. The communications between the main controller and sub controller is performed through the RS-232 or the CAN communication The CAN would be safer and faster than serial communication network since it has non-destructive bitwise arbitration specification. In this paper, we consider the CAN communications generally and then show the usefulness of the proposed controller by demonstrating position control of two DC motors.

  • PDF

Laser Interferometer를 이용한 초정밀위치결정 피드백시스템의 컴퓨터 시뮬레이션 및 제어성능 평가 (Computer Simulation and Control Performance Evaluation for Feedback System of Ultra Positioning by using Laser Interferometer)

  • 김재열;이규태;곽이구;한재호;김창현
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.17-25
    • /
    • 2002
  • This system is composed of fine and coarse apparatus, measurement system and control system. Piezoelectric actuator is designed far fee positioning. We make a study of precision apparatus that is used in the various industrial machine. The study was carried out to develope a precision positioning apparatus, consisting of servo motor and piezoelectric actuator Coarse positioning using lead screw is thrived by servo motor. Control system output a signal from laser interferometer to amplifier of servo motor and piezoelectric actuator after digital signal processing (DSP). Resolution of this apparatus measure with laser interferometer. In this study, design method and control system with ultra precision position apparatus are researched. As the first step, we have estimated for control performance and system stability before an actual apparatus is manufactured by MATLAB with SIMUUNK including various frictions those are composed of pre-design and system modeling.

단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구 (A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process)

  • 김민성;최민혁;배호영;임오득;강정석;한성현
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.