• 제목/요약/키워드: PID(Proportional Integral Derivative) controller

검색결과 141건 처리시간 0.025초

Application of a PID Feedback Control Algorithm for Adaptive Queue Management to Support TCP Congestion Control

  • Ryu, Seungwan;Rump, Christopher M.
    • Journal of Communications and Networks
    • /
    • 제6권2호
    • /
    • pp.133-146
    • /
    • 2004
  • Recently, many active queue management (AQM) algorithms have been proposed to address the performance degradation. of end-to-end congestion control under tail-drop (TD) queue management at Internet routers. However, these AQM algorithms show performance improvement only for limited network environments, and are insensitive to dynamically changing network situations. In this paper, we propose an adaptive queue management algorithm, called PID-controller, that uses proportional-integral-derivative (PID) feedback control to remedy these weak-Dalles of existing AQM proposals. The PID-controller is able to detect and control congestion adaptively and proactively to dynamically changing network environments using incipient as well as current congestion indications. A simulation study over a wide range of IP traffic conditions shows that PID-controller outperforms other AQM algorithms such as Random Early Detection (RED) [3] and Proportional-Integral (PI) controller [9] in terms of queue length dynamics, packet loss rates, and link utilization.

PSO based tuning of PID controller for coupled tank system

  • Lee, Yun-Hyung;Ryu, Ki-Tak;Hur, Jae-Jung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1297-1302
    • /
    • 2014
  • This paper presents modern optimization methods for determining the optimal parameters of proportional-integral-derivative (PID) controller for coupled tank systems. The main objective is to obtain a fast and stable control system for coupled tank systems by tuning of the PID controller using the Particle Swarm Optimization algorithm. The result is compared in terms of system transient characteristics in time domain. The obtained results using the Particle Swarm Optimization algorithm are also compared to conventional PID tuning method like the Ziegler-Nichols tuning method, the Cohen-Coon method and IMC (Internal Model Control). The simulation results have been simulated by MATLAB and show that tuning the PID controller using the Particle Swarm Optimization (PSO) algorithm provides a fast and stable control system with low overshoot, fast rise time and settling time.

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용 (Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

안티와인드업 기법을 가지는 PID 제어기의 EA 기반 동조 (EA-based Tuning of a PID Controller with an Anti-windup Scheme)

  • 진강규;박동진
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.867-872
    • /
    • 2013
  • Many practical processes in industry have nonlinearities of some forms. One commonly encountered form is actuator saturation which can cause a detrimental effect known as integrator windup. Therefore, a strategy of attenuating the effects of integrator windup is required to guarantee the stability and performance of the overall control system. In this paper, optimal tuning of a PID (Proportional-Integral-Derivative) controller with an anti-windup scheme is presented to enhance the tracking performance of the PID control system in the presence of the actuator saturation. First, we investigate effective anti-windup schemes. Then, the parameters of both the PID controller and the anti-windup scheme are optimally tuned by an EA (Evolutionary Algorithm) such as the IAE (Integral of Absolute Error) is minimized. A set of simulation works on two high-order processes demonstrates the benefit of the proposed method.

농식품 시료 전처리를 위한 마이크로웨이브 분해기용 온도 제어장치 개발 (Development of a Temperature Controller for Microwave-assisted Digestion System for Agricultural Samples)

  • 모창연;김기영;김학진;김용훈;양길모;이강진
    • Journal of Biosystems Engineering
    • /
    • 제34권5호
    • /
    • pp.371-376
    • /
    • 2009
  • Microwave digestion is a preferred pretreatment method for agricultural samples because of its quick chemical reaction and minimum loss of analytes. In this research, a feedback temperature controller was developed to control the temperature inside a vessel for the microwave-assisted digestion system. An existing industrial microwave oven was fitted with the temperature controller for controlling inside temperature of the vessel. Four control methods, On/Off, proportional (P), proportional integral (PI), and proportional integral derivative (PID) were used and compared. Experimental results showed that PID control produced best temperature control performance. The PID controller could maintain the temperature of water sample and rice sample in the digestion system with error range of $-2.5{\sim}3.3^{\circ}C$ and $-1.9{\sim}0.5^{\circ}C$ at set temperature of $170^{\circ}C$, respectively.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.