• Title/Summary/Keyword: PI3-Kinase

Search Result 350, Processing Time 0.033 seconds

H9 Inhibits Tumor Growth and Induces Apoptosis via Intrinsic and Extrinsic Signaling Pathway in Human Non-Small Cell Lung Cancer Xenografts

  • Kim, Min-Je;Kwon, Sae-Bom;Ham, Seung Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu;Choi, Kang Duk;Hong, Jin Tae;Jung, Seung Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.648-657
    • /
    • 2015
  • H9, a novel herbal extract, demonstrated cytotoxicity in A549 non-small cell lung cancer (NSCLC) cell lines. In this study, we investigated whether H9, and/or co-treatment with an anticancer drug, pemetrexed (PEM), inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. The mice were separated into groups and administered H9 and PEM for 2 weeks. Protein and mRNA levels were detected using western blotting and reverse transcription polymerase chain reaction, respectively; immunohistochemistry (IHC) was also performed on the tumor tissues. H9 and co-treatment with PEM induced the cleavage of proapoptotic factors, such as caspase-3, caspase-8, caspase-9, and poly(ADP)-ribose polymerase (PARP). Expression levels of cell-death receptors involving Fas/FasL, TNF-related apoptosisinducing ligands (TRAIL), and TRAIL receptors were increased by H9 and co-treatment with PEM. Furthermore, analysis of levels of cell-cycle modulating proteins indicated that tumor cells were arrested in the G1/S phase. In addition, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt survival signaling pathways were inhibited by H9 and co-treatment with PEM. In conclusion, H9 and co-treatment with PEM inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. These results indicate that H9 and co-treatment with PEM can be used as an anticancer therapy in NSCLC.

Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells

  • Roolf, Catrin;Saleweski, Jan-Niklas;Stein, Arno;Richter, Anna;Maletzki, Claudia;Sekora, Anett;Escobar, Hugo Murua;Wu, Xiao-Feng;Beller, Matthias;Junghanss, Christian
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.492-501
    • /
    • 2019
  • Nitrogen-containing heterocycles such as quinoline, quinazolinones and indole are scaffolds of natural products and have broad biological effects. During the last years those structures have been intensively synthesized and modified to yield new synthetic molecules that can specifically inhibit the activity of dysregulated protein kinases in cancer cells. Herein, a series of newly synthesized isoquinolinamine (FX-1 to 8) and isoindoloquinazolinone (FX-9, FX-42, FX-43) compounds were evaluated in regards to their anti-leukemic potential on human B- and T- acute lymphoblastic leukemia (ALL) cells. Several biological effects were observed. B-ALL cells (SEM, RS4;11) were more sensitive against isoquinolinamine compounds than T-ALL cells (Jurkat, CEM). In SEM cells, metabolic activity decreased with $10{\mu}M$ up to 26.7% (FX-3), 25.2% (FX-7) and 14.5% (FX-8). The 3-(p-Tolyl) isoquinolin-1-amine FX-9 was the most effective agent against B- and T-ALL cells with IC50 values ranging from 0.54 to $1.94{\mu}M$. None of the tested compounds displayed hemolysis on erythrocytes or cytotoxicity against healthy leukocytes. Anti-proliferative effect of FX-9 was associated with changes in cell morphology and apoptosis induction. Further, influence of FX-9 on PI3K/AKT, MAPK and JAK/STAT signaling was detected but was heterogeneous. Functional inhibition testing of 58 kinases revealed no specific inhibitory activity among cancer-related kinases. In conclusion, FX-9 displays significant antileukemic activity in B- and T-ALL cells and should be further evaluated in regards to the mechanisms of action. Further compounds of the current series might serve as templates for the design of new compounds and as basic structures for modification approaches.

Immunohistochemical Study of Phosphatase and Tensin Homolog Deleted on Chromosome Ten in Gefitinib Treated Nonsmall Cell Lung Cancer Patients (폐암 조직에서의 PTEN 발현 정도와 Gefitinib의 반응율과의 관계)

  • Lee, Sung Yong;Lee, Ju Han;Jung, Jin Yong;Lee, Kyoung Ju;Lee, Seung Hyeun;Kim, Se Joong;Lee, Eun Joo;Hur, Gyu Young;Jung, Ki Hwan;Jung, Hye Cheol;Lee, Sang Yeub;Kim, Je Hyeong;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Kang, Kyung Ho;Yoo, Se Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.5
    • /
    • pp.473-479
    • /
    • 2005
  • Background : Gefitinib targets the epidermal growth factor receptor r(EGFR), and Gefitinib has antitumor activity in patient with non-small cell lung cancer (NSCLC). However, only 10 to 20 percent of patients show a clinical response to this drug, and the molecular mechanisms underlying patient sensitivity to gefitinib are unknown. PTEN (Phosphatase and tensin homolog deleted on chromosome Ten) plays a role for the modulation of the phosphatidylinositol 3-kinase pathway (PI3K), which is involved in cell proliferation and survival, so that it can inhibit cell cycle progression and induce G1 arrest. Therefore, we analyzed the relationship between PTEN expression and gefitinib's responsiveness in patients having advanced non small cell lung cancer that had progressed after previous chemotherapy. Methods : The expression of PTEN was studied by immunohistochemistry in paraffin-embedded tumor blocks that were obtained from 22 patients who had been treated with gefitinib from JAN, 2001 to AUG. 2004. For the evaluation of the relationships between the PTEN expression, the clinical stage and the basal characteristics, those cases that showed the respective antigen expression in >50% of the tumor cells were considered positive. Results : The positive rate of PTEN staining was 55% of the total of 22 patients. There was a significant relationship between the increased expression of PTEN and the response group (p=0.039). However, there was no significant relationship between the expression of PTEN and other clinicopathologic characteristics. Conclusion: The expression of PTEN in patients with advanced non small cell lung cancer that has progressed after previous chemotherapy may play a role in gefitinib's responsiveness.

Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats (Scopoletin 보충이 만성 알코올을 급여한 흰쥐의 인슐린저항성 및 항산화방어계에 미치는 영향)

  • Lee, Hae-In;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • This study investigated the effects of scopoletin (6-methoxy-7-hydroxycoumarin) supplementation on insulin resistance and the antioxidant defense system in chronic alcohol-fed rats. Rats were fed a Lieber-Decarli liquid diet containing 5% ethanol with or without two doses of scopoletin (0.01 and 0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. Chronic alcohol did not affect fasting serum glucose levels, although it induced glucose intolerance and hyperinsulinemia compared with the pair-fed group and led to insulin resistance. Both doses of scopoletin similarly improved glucose intolerance, serum insulin level, and insulin resistance. Scopoletin supplementation significantly activated phosphatidyl inositol 3-kinase, which was inhibited by chronic alcohol. Two doses of scopoletin up-regulated hepatic mRNA expression and activity of glucokinase as well as down-regulated mRNA expression and activity of glucose-6-phosphatase compared with the alcohol control group. Both doses of scopoletin significantly reduced cytochrome P450 2E1 activity and elevated aldehyde dehydrogenase 2 activity, resulting in a lower serum acetaldehyde level compared with the alcohol control group. Chronic alcohol suppressed hepatic mRNA expression and activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; however, they were reversed by scopoletin supplementation, which reduced hydrogen peroxide and lipid peroxide levels in the liver. These results indicate that dietary scopoletin attenuated chronic alcohol-induced insulin resistance and activated the antioxidant defense system through regulation of hepatic gene expression in glucose and antioxidant metabolism.

Constitutive Activation of $p70^{S6k}$ in Cancer Cells

  • Kwon, Hyoung-Keun;Bae, Gyu-Un;Yoon, Jong-Woo;Kim, Yong-Kee;Lee, Hoi-Young;Lee, Hyang-Woo;Han, Jeung-Whan
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2002
  • The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.

Antioxidant Activity of Citrus Peel and Effect on its Glucose Metabolism in L6 Rat Skeletal Muscle Cells (진피(陳皮)의 항산화 활성 및 L6 근육세포에서 당대사에 미치는 영향)

  • Kim, Soo Hyun;Park, Hae-Jin;Kim, Kyeong Jo;Kim, Min Ju;Lee, Jin A;Lee, Ah Reum;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.101-108
    • /
    • 2018
  • Objectives : This study aimed to effects antioxidant activity of citrus peel extract (CPE) and effect on its glucose metabolism in L6 rat skeletal muscle cells. Methods : Antioxidative activities were evaluated by using 10 kinds of natural materials, and total polyphenol and flavonoid contents were examined. The L6 muscle cells toxicity of CPE was examined by MTT assay. Expression of glucose-related genes in L6 muscle cells by CPE treatment was analyzed by real-time PCR and western blotting. Results : The $IC_{50}$ values of DPPH and ABTS free radical scavenging activity of CPE were ($15.47{\pm}0.26{\mu}g/m{\ell}$ and $12.07{\pm}1.23{\mu}g/m{\ell}$, respectively), effectively clearing DPPH and ABTS. CPE showed total polyphenol and flavonoid contents ($20.30{\pm}0.38$ and $64.20{\pm}0.52$, respectively). The selected CPE were used in experiments using an effective concentration that is not toxic in L6 muscle cells. We investigated insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase regulatory (PI3KR), Akt, and glucose transporter 4 (GLUT4). mRNA analysis by realtime PCR showed no significant difference, but CPE-treated cells showed a tendency to increase in concentration-dependent manner. However, analysis of protein expression of Akt and GLUT4 by western blotting showed that CPE treatment significantly increased concentration dependent (p<0.001). Conclusions : As a result, citrus peel extract with high antioxidant activity regulates glucose metabolism in L6 muscle cells. Therefore, CPE can be a potential treatment for the treatment of diabetes.

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.

Anti-Oxidative and Anti-Inflammatory Activities of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Park, Jung Ae;Lee, Ji Young;Kang, Ji Sook;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • In this study, the anti-oxidative and anti-inflammatory activities of Euptelea pleiosperma ethanol extract (EPEE) were evaluated using in vitro assays and cell culture model systems. EPEE possessed a more potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl than the ascorbic acid used as a positive control. EPEE effectively suppressed lipopolysaccharide (LPS), in addition to hydrogen peroxide induced reactive oxygen species on RAW 264.7 cells. Furthermore, EPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1) and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), dose and time dependently. The modulation of HO-1 and Nrf2 expression might be regulated by mitogen-activated protein kinases and phosphatidyl inositol 3 kinase/Akt as their upstream signaling pathways. On the other hand, EPEE inhibited LPS induced nitric oxide (NO) formation without cytotoxicity. Suppression of NO formation was the result of the down regulation of inducible NO synthase (iNOS) by EPEE. Suppression of NO and iNOS by EPEE may be modulated by their upstream transcription factor, nuclear factor ${\kappa}B$, and AP-1 pathways. Taken together, these results provide important new insights into E. pleiosperma, namely that it possesses anti-oxidative and anti-inflammatory activities, indicating that it could be utilized as a promising material in the field of nutraceuticals.

Tenebrio molitor (Mealworm) Extract Improves Insulin Sensitivity and Alleviates Hyperglycemia in C57BL/Ksj-db/db Mice (C57BL/Ksj-db/db 제 2형 당뇨모델을 이용한 갈색거저리 유충(밀웜) 추출물의 인슐린 감수성 및 혈당개선효과)

  • Kim, Seon Young;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.570-579
    • /
    • 2019
  • Diabetes is one of the serious chronic metabolic diseases caused by Westernized eating habits, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent diabetic complications. This study was designed to investigate the anti-diabetic effects of a mealworm (Tenebrio molitor larva) extract (MWE) on hyperglycemia in an animal model with type 2 diabetes. Diabetic C57BL/Ksj-db/db mice were divided into three groups: diabetic control, rosiglitazone, and MWE. The mice supplemented with MWE showed significantly lower blood levels of glucose and glycosylated hemoglobin when compared with the diabetic control mice. The homeostatic index of insulin resistance was significantly lower in mice supplemented with MWE than in diabetic control mice. MWE supplementation significantly stimulated the phosphorylation of insulin receptor substrate-1 and Akt, and activation of phosphatidylinositol 3-kinase in insulin signaling pathway of skeletal muscles. Eventually, MWE increased the expression of the plasma membrane glucose transporter 4 (GLUT4) via PI3K/Akt activation. These findings demonstrate that the increase in plasma membrane GLUT4 expression by MWE promoted the uptake of blood glucose into cells and relieved hyperglycemia in skeletal muscles of diabetic C57BL/Ksj-db/db mice. Therefore, mealworms are expected to prove useful for the prevention and treatment of diabetes, and further studies are needed to improve type 2 diabetes in the future.