Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.199

Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells  

Roolf, Catrin (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Saleweski, Jan-Niklas (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Stein, Arno (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Richter, Anna (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Maletzki, Claudia (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Sekora, Anett (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Escobar, Hugo Murua (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Wu, Xiao-Feng (Leibniz-Institute for Catalysis at the University of Rostock)
Beller, Matthias (Leibniz-Institute for Catalysis at the University of Rostock)
Junghanss, Christian (Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center)
Publication Information
Biomolecules & Therapeutics / v.27, no.5, 2019 , pp. 492-501 More about this Journal
Abstract
Nitrogen-containing heterocycles such as quinoline, quinazolinones and indole are scaffolds of natural products and have broad biological effects. During the last years those structures have been intensively synthesized and modified to yield new synthetic molecules that can specifically inhibit the activity of dysregulated protein kinases in cancer cells. Herein, a series of newly synthesized isoquinolinamine (FX-1 to 8) and isoindoloquinazolinone (FX-9, FX-42, FX-43) compounds were evaluated in regards to their anti-leukemic potential on human B- and T- acute lymphoblastic leukemia (ALL) cells. Several biological effects were observed. B-ALL cells (SEM, RS4;11) were more sensitive against isoquinolinamine compounds than T-ALL cells (Jurkat, CEM). In SEM cells, metabolic activity decreased with $10{\mu}M$ up to 26.7% (FX-3), 25.2% (FX-7) and 14.5% (FX-8). The 3-(p-Tolyl) isoquinolin-1-amine FX-9 was the most effective agent against B- and T-ALL cells with IC50 values ranging from 0.54 to $1.94{\mu}M$. None of the tested compounds displayed hemolysis on erythrocytes or cytotoxicity against healthy leukocytes. Anti-proliferative effect of FX-9 was associated with changes in cell morphology and apoptosis induction. Further, influence of FX-9 on PI3K/AKT, MAPK and JAK/STAT signaling was detected but was heterogeneous. Functional inhibition testing of 58 kinases revealed no specific inhibitory activity among cancer-related kinases. In conclusion, FX-9 displays significant antileukemic activity in B- and T-ALL cells and should be further evaluated in regards to the mechanisms of action. Further compounds of the current series might serve as templates for the design of new compounds and as basic structures for modification approaches.
Keywords
Acute lymphoblastic leukemia; Heterocycles; Isoquinolinamine; Isoindoloquinazolinone; Apoptosis; Kinase inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Feng, J.-B. and Wu, X.-F. (2016) Potassium tert -butoxide-promoted synthesis of 1-aminoisoquinolines from 2-methylbenzonitriles and benzonitriles under catalyst-free conditions. Adv. Synth. Catal. 358, 2179-2185.   DOI
2 Gao, X., Cen, L., Li, F., Wen, R., Yan, H., Yao, H. and Zhu, S. (2018) Oral administration of indole substituted dipyrido[2,3-d]pyrimidine derivative exhibits anti-tumor activity via inhibiting AKT and ERK1/2 on hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 505, 761-767.   DOI
3 Hameed, A., Al-Rashida, M., Uroos, M., Ali, S. A., Arshia, Ishtiaq, M. and Khan, K. M. (2018) Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review (2011-2016). Expert Opin. Ther. Pat. 28, 281-297.   DOI
4 He, L., Chang, H. X., Chou, T. C., Savaraj, N. and Cheng, C. C. (2003) Design of antineoplastic agents based on the "2-phenylnaphthalene-type" structural pattern - synthesis and biological activity studies of 11H-indolo[3.2-c]quinoline derivatives. Eur. J. Med. Chem. 38, 101-107.   DOI
5 Shen, C., Man, N. Y. T., Stewart, S. and Wu, X.-F. (2015) Palladium-catalyzed dicarbonylative synthesis of tetracycle quinazolinones. Org. Biomol. Chem. 13, 4422-4425.   DOI
6 Shen, C., Spannenberg, A. and Wu, X.-F. (2016) Palladium-catalyzed carbonylative four-component synthesis of thiochromenones: the advantages of a reagent capsule. Angew. Chemie Int. Ed. 55, 5067-5070.   DOI
7 Solomon, V. R. and Lee, H. (2011) Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 18, 1488-1508.   DOI
8 Stansfield, L. C. and Pollyea, D. A. (2017) Midostaurin: a new oral agent targeting FMS-like tyrosine kinase 3-mutant acute myeloid leukemia. Pharmacother. J. Hum. Pharmacol. Drug Ther. 37, 1586-1599.   DOI
9 Terwilliger, T. and Abdul-Hay, M. (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7, e577.   DOI
10 Stumpel, D. J. P. M., Schneider, P., van Roon, E. H. J., Boer, J. M., de Lorenzo, P., Valsecchi, M. G., de Menezes, R. X., Pieters, R. and Stam, R. W. (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114, 5490-5498.   DOI
11 Vandekerckhove, S. and D'hooghe, M. (2015) Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem. 23, 5098-5119.   DOI
12 Wei, A. H. and Tiong, I. S. (2017) Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood 130, 2469-2474.   DOI
13 Wu, P., Nielsen, T. E. and Clausen, M. H. (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36, 422-439.   DOI
14 Yanamandra, M., Mitra, S. and Giri, A. (2015) Development and application of PI3K assays for novel drug discovery. Expert Opin. Drug Discov. 10, 171-186.   DOI
15 Mantu, D., Antoci, V., Moldoveanu, C., Zbancioc, G. and Mangalagiu, I. I. (2016) Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzyme Inhib. Med. Chem. 31, 96-103.
16 Karki, S. S., Hazare, R., Kumar, S., Bhadauria, V. S., Balzarini, J. and De Clercq, E. (2009) Synthesis, anticancer and cytostatic activity of some 6H-indolo[2,3-b]quinoxalines. Acta Pharm. 59, 431-440.   DOI
17 Kazandjian, D., Blumenthal, G. M., Yuan, W., He, K., Keegan, P. and Pazdur, R. (2016) FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin. Cancer Res. 22, 1307-1312.   DOI
18 Kretzschmar, C., Roolf, C., Langhammer, T.-S., Sekora, A., Pews-Davtyan, A., Beller, M., Frech, M. J., Eisenloffel, C., Rolfs, A. and Junghanss, C. (2014) The novel arylindolylmaleimide PDA-66 displays pronounced antiproliferative effects in acute lymphoblastic leukemia cells. BMC Cancer 14, 71.   DOI
19 Li, Z., Luo, M., Cai, B., Haroon-Ur-Rashid, Huang, M., Jiang, J., Wang, L. and Wu, L. (2018) Design, synthesis, biological evaluation and structure-activity relationship of sophoridine derivatives bearing pyrrole or indole scaffold as potential antitumor agents. Eur. J. Med. Chem. 157, 665-682.   DOI
20 Maletzki, C., Klier, U., Marinkovic, S., Klar, E., Andra, J. and Linnebacher, M. (2014) Host defense peptides for treatment of colorectal carcinoma - a comparative in vitro and in vivo analysis. Oncotarget 5, 4467-4479.   DOI
21 Martell, R. E., Brooks, D. G., Wang, Y. and Wilcoxen, K. (2013) Discovery of novel drugs for promising targets. Clin. Ther. 35, 1271-1281.   DOI
22 Hotchkiss, R. S., Strasser, A., McDunn, J. E. and Swanson, P. E. (2009) Cell death. N. Engl. J. Med. 361, 1570-1583.   DOI
23 Musiol, R. (2017) An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov. 12, 583-597.   DOI
24 Yang, D., Tong, D., Zhang, Q., Wang, Y., Sun, J., Zhang, F. and Zhao, G. (2017) Design, synthesis, and evaluation of novel Akt1 inhibitors based on an indole scaffold. Chem. Biol. Drug Des. 90, 791-803.   DOI
25 Miller, B. W., Przepiorka, D., de Claro, R. A., Lee, K., Nie, L., Simpson, N., Gudi, R., Saber, H., Shord, S., Bullock, J., Marathe, D., Mehrotra, N., Hsieh, L. S., Ghosh, D., Brown, J., Kane, R. C., Justice, R., Kaminskas, E., Farrell, A. T. and Pazdur, R. (2015) FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin. Cancer Res. 21, 1525-1529.   DOI
26 Moore, D. E., Weise, K., Zawydiwski, R. and Thompson, E. B. (1985) The karyotype of the glucocorticoid-sensitive, lymphoblastic human T-cell line CCRF-CEM shows a unique deleted and inverted chromosome 9. Cancer Genet. Cytogenet. 14, 89-94.   DOI
27 Mphahlele, M., Mmonwa, M., Aro, A., McGaw, L. and Choong, Y. (2018) Synthesis, biological evaluation and molecular docking of novel indole-aminoquinazoline hybrids for anticancer properties. Int. J. Mol. Sci. 19, 2232.   DOI
28 Mukherjee, S. and Pal, M. (2013) Medicinal chemistry of quinolines as emerging anti-inflammatory agents: an overview. Curr. Med. Chem. 20, 4386-4410.   DOI
29 Musiol, R., Serda, M., Hensel-Bielowka, S. and Polanski, J. (2010) Quinoline-based antifungals. Curr. Med. Chem. 17, 1960-1973.   DOI
30 Naeem, A., Badshah, S., Muska, M., Ahmad, N. and Khan, K. (2016) The current case of quinolones: synthetic approaches and antibacterial activity. Molecules 21, 268.   DOI
31 Neri, L. M., Cani, A., Martelli, A. M., Simioni, C., Junghanss, C., Tabellini, G., Ricci, F., Tazzari, P. L., Pagliaro, P., McCubrey, J. A. and Capitani, S. (2014) Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 28, 739-748.   DOI
32 Rahman, A. F. M. M., Korashy, H. M. and Kassem, M. G. (2014) Gefitinib. Profiles Drug Subst. Excip. Relat. Methodol. 39, 239-264.   DOI
33 Akhtar, M. J., Yar, M. S., Khan, A. A., Ali, Z. and Haider, M. R. (2017) Recent advances in the synthesis and anticancer activity of some molecules other than nitrogen containing heterocyclic moeities. Mini Rev. Med. Chem. 17, 1602-1632.
34 Ardito, F., Giuliani, M., Perrone, D., Troiano, G. and Lo Muzio, L. (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int. J. Mol. Med. 40, 271-280.   DOI
35 Buontempo, F., Orsini, E., Martins, L. R., Antunes, I., Lonetti, A., Chiarini, F., Tabellini, G., Evangelisti, C., Melchionda, F., Pession, A., Bertaina, A., Locatelli, F., McCubrey, J. A., Cappellini, A., Barata, J. T. and Martelli, A. M. (2014) Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia 28, 543-553.   DOI
36 Buontempo, F., McCubrey, J. A., Orsini, E., Ruzzene, M., Cappellini, A., Lonetti, A., Evangelisti, C., Chiarini, F., Evangelisti, C., Barata, J. T. and Martelli A. M. (2017) Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia 32, 1-10.   DOI
37 Cani, A., Simioni, C., Martelli, A. M., Zauli, G., Tabellini, G., Ultimo, S., McCubrey, J. A., Capitani, S. and Neri, L. M. (2015) Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia. Oncotarget 6, 6597-6610.   DOI
38 Paubelle, E., Zylbersztejn, F. and Thomas, X. (2017) The preclinical discovery of vosaroxin for the treatment of acute myeloid leukemia. Expert Opin. Drug Discov. 12, 747-753.   DOI
39 Piazza, F., Manni, S., Ruzzene, M., Pinna, L.A., Gurrieri, C. and Semenzato, G. (2012) Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174-1179.   DOI
40 Richter, A., Roolf, C., Sender, S., Kong, W., Knubel, G., Sekora, A., Gladbach, Y. S., Hamed, M., Fuellen, G., Vollmar, B., Jeremias, I., Panse, J. P., Escobar, H. M. and Junghanss, C. (2017) Casein kinase II inhibition by CX-4945 and epigenetic modulation by decitabine demonstrate significant antiproliferative activity as single agents as well as in combination in acute b-lymphoblastic leukemia cells. Blood 130, 3887.
41 Schneider, U., Schwenk, H. U. and Bornkamm, G. (1977) Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer 19, 621-626.   DOI
42 Dadashpour, S. and Emami, S. (2018) Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms. Eur. J. Med. Chem. 150, 9-29.   DOI
43 Schult, C., Dahlhaus, M., Ruck, S., Sawitzky, M., Amoroso, F., Lange, S., Etro, D., Glass, A., Fuellen, G., Boldt, S., Wolkenhauer, O., Neri, L. M., Freund, M. and Junghanss, C. (2010) The multikinase inhibitor Sorafenib displays significant antiproliferative effects and induces apoptosis via caspase 3, 7 and PARP in B- and T-lymphoblastic cells. BMC Cancer 10, 560.   DOI
44 Schult, C., Dahlhaus, M., Glass, A., Fischer, K., Lange, S., Freund, M. and Junghanss, C. (2012) The dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic drugs exerts anti-proliferative activity towards acute lymphoblastic leukemia cells. Anticancer Res. 32, 463-474.
45 Chon, H. J., Bae, K. J., Lee, Y. and Kim, J. (2015) The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front. Pharmacol. 6, 70.   DOI
46 Cozza, G. (2017) The development of CK2 inhibitors: from traditional pharmacology to in silico rational drug design. Pharmaceuticals 10, 26.   DOI
47 Cozza, G., Pinna, L. A. and Moro, S. (2012) Protein kinase CK2 inhibitors: a patent review. Expert Opin. Ther. Pat. 22, 1081-1097.   DOI
48 Eastman, A. (2017) Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget 8, 8854-8866.   DOI