Browse > Article

Constitutive Activation of $p70^{S6k}$ in Cancer Cells  

Kwon, Hyoung-Keun (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
Bae, Gyu-Un (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
Yoon, Jong-Woo (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
Kim, Yong-Kee (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
Lee, Hoi-Young (Department of Pharmacology, College of Medicine, Konyang University)
Lee, Hyang-Woo (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
Han, Jeung-Whan (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
Publication Information
Archives of Pharmacal Research / v.25, no.5, 2002 , pp. 685-690 More about this Journal
Abstract
The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.
Keywords
$p70^{S6k}$; Rapamycin; Proliferation;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Barlund, M., Forozan, F., Kononen, J., Bubendorf, L., Chen, Y., Bittner, M. L., Torhorst, J., Haas, P., Bucher, C., Sauter, G., Kallioniemi, O. P. and Kallioniemi, A., Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J. Natl. Cancer lnst., 92, 1252-1259 (2000)   DOI   ScienceOn
2 Jefferies, H. B. J., Reinhard, C., Kozma, S. C. and Thomas, G., Rapamycin selectively represses translation of the 'polypyrimidine tract' mRNA family. Proc. Natl. Acad. Sci. USA, 91, 4441-4445 (1994)   DOI   ScienceOn
3 Jefferies, H. B. J., Thomas, G. and Thomas, G., Elongation factor-1 alpha mRNA is selectively translated following mitogenic stimulation. J. Biol. Chem., 269, 4367-4372 (1994)   PUBMED
4 Morley, S. J. and Thomas, G., Intracellular messengers and the control of protein synthesis. Pharmacol. Ther., 50, 291-319 (1991)   DOI   ScienceOn
5 Schlessinger J., How receptor tyrosine kinases activate Ras. Trends Biochem. Sci., 18, 273-275 (1993)   DOI   PUBMED   ScienceOn
6 Seufferlein, T. and Rozengurt, E., Rapamycin inhibits constitutive p$70^{s6k}$ phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res.,56, 1895-1897 (1996)
7 Stewart, M. J. and Thomas G., Mitogenesis and protein synthesis: a role for ribosomal protein S6 phosphorylation? BioEssay, 16, 809-815 (1994)   DOI   ScienceOn
8 Weng, Q. P., Khurshid, A, Kozlowski, M. T., Grove, J. R. and Avruch, J., Multiple independent inputs are required for activation of the p70 S6 kinase. Mol. Cell. Biol., 15, 2333-2340 (1995)   DOI   PUBMED
9 Conus, N. M., Hemmings, B. A and Pearson, R. B., Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p$70^{s6k}$ J. Biol. Chem., 273, 4776-4782 (1998)   DOI   ScienceOn
10 Cowley, S., Paterson, H., Kemp, P. and Marshall, C. J., Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell, 77, 841-852 (1994)   DOI   ScienceOn
11 Kitamura, T., Ogawa, W, Sakaue, H., Hino, Y, Kuroda, S., Takata, M., Matsumoto, M., Maeda, T., Konishi, H., Kikkawa, U. and Kasuga, M., Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol. Cell. Biol., 18, 3708-3717 (1998)   DOI   PUBMED
12 Chang, L. and Karin, M., Mammalian MAP kinase signalling cascades. Nature, 410, 37-40 (2001)   DOI   ScienceOn
13 Downward, J., Signal transduction. A target for PI(3) kinase. Nature, 376, 553-554 (1995)   DOI   PUBMED   ScienceOn
14 Ming, X. F., Burgering, B. M. T., Wennstrom, S., Claesson, W. L., Heldin, C. H., Bos, J. L., Kozma, S. C. and Thomas, G., Activation of p70/p85 S6 kinase by a pathway independent of p$21^{ras}$. Nature, 371, 426-429 (1994)   DOI   PUBMED   ScienceOn
15 Chung, J., Grammer, T., Lemon, K. P., Kazlauskas, A and Blenis, J., PDGF- and insulin-dependent pp$70^{s6k}$ activation mediated by phosphatidylinositol-3-OH kinase. Nature, 370, 71-75 (1994)   DOI   ScienceOn
16 Cheatham, B., Vlahos, C. J., Cheatham, L., Wang, L., Blenis, J. and Kahn, C. R., Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol., 14, 4902-4911 (1994)   DOI   PUBMED
17 Feig, L. A, The many roads that lead to Ras. Science, 260, 767-768 (1993)   DOI   PUBMED
18 Seger, R. and Krebs, E. G., The MAPK signaling cascade. FASEB J., 9, 726-35 (1995)   PUBMED
19 Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F.,Han, J. W. and Hemmings, B. A., Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl. Acad. Sci. USA, 93, 5699-5704 (1996)   DOI   ScienceOn
20 Davis, R J., The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem., 268, 14553-14556 (1993)   PUBMED
21 Clemens, M. J. and Bommer, U. A, Translational control: the cancer connection. lnt. J. Biochem. Cell. Biol., 31, 1-23 (1999)   DOI   ScienceOn
22 Avruch, J., Zhang, X. F. and Kyriakis, J. M., Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci., 19, 279-283 (1994)   DOI   PUBMED   ScienceOn
23 Ferrari, S., Pearson, R. B., Siegmann, M., Kozma, S. C. and Thomas, G., The immunosuppressant rapamycin induces inactivation of p$70^{s6k}$ through dephosphorylation of a novel set of sites. J. BioI. Chem., 268, 16091-16099 (1993)