• Title/Summary/Keyword: PI/PD controller

Search Result 63, Processing Time 0.035 seconds

A PI-PD Controller Design for Position Control of an IPMSM (IPMSM의 위치제어를 위한 PI-PD 제어기 설계)

  • Jang, Ju-Hyeong;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.97-98
    • /
    • 2016
  • 본 논문은 위치, 속도, 전류 제어기들이 직렬로 연결된 전동기 구동시스템에서 속도 제어기를 사용하지 않는 위치 제어를 위한 PI-PD 제어기 설계법을 제안한다. 기존의 PI-PD 위치 제어기 설계법과 달리 제안된 제어기의 설계법은 위치 제어기의 대역폭에 따라 이득 값을 설정할 수 있다. 제안된 위치 제어기 설계 성능을 검증하기 위해 IPMSM 구동시스템에서 실험을 통해 유효성을 확인하였다.

  • PDF

A study on self tuning fuzzy PI and PD type controller (PI 및 PD Type Fuzzy Controller의 자기동조에 관한 연구)

  • Lee, Sang-Seock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 2000
  • This paper describes a development of self tuning scheme for PI and PO type fuzzy controllers. The output scaling factor(SF) is adjusted on-line by fuzzy rules according to the current trend of the controlled process. The rule-base for tuning the output SF is defined on error and change of error for the controlled variable using the most natural and unbiased membership functions. Simulation results demonstrate the better control performance can be achieved in comparison with Ziegler-Nichols(Z-N) PID controllers.

  • PDF

The Control of a flexible Robotic Finger Driven by PZT (압전소자로 구동되는 유연성 로봇 핑거의 제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF

Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model

  • Vyawahare, Vishwesh A.;Datkhile, G.;Kadam, P.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.688-694
    • /
    • 2021
  • The aim of this work is the analysis, design and hardware implementation of the fractional-order point kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK models are critical issues. The closed-loop stability of the controller-plant structure is established. Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable closed-loop response.

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

Design of PI-PD Controllers to Improve a Response Characteristic in Position Control System (위치제어계에서 응답특성 개선을 위한 PI-PD제어기의 설계)

  • Kim, Jong-Hyeok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.651-657
    • /
    • 2012
  • In many control fields high position performance is essentially required in reducing the over-shoot phenomena which is produced by improving the quick response in starting and in minimizing the variation of the response characteristic on disturbance and load variation In this paper, the design method for a position control is suggested for constructing the PI-PD controllers by using an internal PD feedback loop in PI and PD control system. Applying this method to the position control system used a DC servo motor as a driver, the transfer PI and PD controllers are designed simultaneously and the coefficients of these controllers are determined by using the transfer function of a plant and a proportional coefficient from mathematical technique. From the result of computer simulation in PI-PD control system by applying this control technique, we can verify the usefulness of this method in rejecting of over-shoot of starting, compensating of response variation on the load variation, and shorting the settling time.

PD/PID Speed Controller Design for Low-stiffness Servo Drive System (저강성 서보 구동시스템을 위한 PD/PID 속도제어기 설계)

  • Bae S.G.;Seok J.K.;Lee D.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.544-547
    • /
    • 2003
  • The purpose of this paper is to develop the straightforward design guidelines of PD/PID speed controller for Industry servo drives with plug and play concept. The controller gains are uniquely determined from the current control loop dynamics, speed loop delay, and mechanical parameters. In order to eliminate the mechanical friction uncertainties, an automatic PD/PI control mode switching algorithm Is introduced using online spectrum analysis of motor torque command. The dynamic performance of the proposed scheme assures a fast tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of conventional PI control scheme, extensive test is carried out on actual servo system.

  • PDF

Design of a Fuzzy PI/PD Controller Based on Genetic Algorithm for Optical Disk Drive (유전알고리즘 기반 광디스크를 위한 퍼지 PI/PD 제어기 설계)

  • Yu, Jong-Hwa;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2221-2223
    • /
    • 2004
  • 본 논문에서는 유전알고리즘을 기반으로 하여 설계된 광 디스크 드라이브의 광학헤드 구동기용 퍼지 PI/PD 제어기를 제안한다. 본 논문에서 제안하는 제어기는 광디스크 드라이브의 광학헤드용 구동기의 포커싱 서보계, 트랙킹 서보계를 제어할 수 있는 퍼지 제어기이며 유전알고리즘을 통해 최적의 퍼지 규칙을 도출한다. 그리고 이를 토대로 모의실험을 수행한다.

  • PDF

Mamdani Fuzzy PID Controller for Processes with Small Dead Times

  • Jongkol, Ngamwiwit;Choi, Byoung-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.1-45
    • /
    • 2001
  • This paper proposes a Mamdani fuzzy PID controller for controlling a process with small dead time. The controller composes of a parallel structure of fuzzy PI controller and fuzzy PD controller. Each controller has two inputs, error and change of error. Hence, the control signal of the proposed controller is the average value of the output of the fuzzy PI and PD controllers. The Mamdani fuzzy PID controller is easily to be adjusted to meet the desired control system performances both in transient state and steady state. The simulation results of the proposed Mamdani fuzzy PID controller by using the same parameters (proportional gain, integral time and derivative time) as the conventional PID controller are shown. The response of the Mamdani fuzzy PID control system is faster than the conventional PID control system. Both system responses have ...

  • PDF