• Title/Summary/Keyword: PGG

Search Result 18, Processing Time 0.026 seconds

Effect of 1,2,3,4,6-penta-O-gallolyl-β-ᴅ-glucose on markers of cognitive function in human neuroblastoma SK-N-SH cell line (1,2,3,4,6-Penta-O-gallolyl-β-ᴅ-glucose가 인간 유래 신경모세포주인 SK-N-SH세포의 인지기능 표지자에 미치는 영향)

  • Yoon, Hyeon Seok;Park, So Yeon;Kim, Yoon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.715-721
    • /
    • 2021
  • Cognitive impairment and Alzheimer's disease are serious social problems associated with the rising elderly population in Korea. 1,2,3,4,6-Penta-O-galloyl-β-ᴅ-glucopyranose (PGG) is a gallotannin isolated from medicinal plants such as Rhus chinensis. This study was performed to evaluate the effect of PGG on biomarkers related to cognitive function in human neuroblastoma SK-N-SH cells. Inhibition of acetylcholinesterase (AChE) activity is considered to be one of the main therapeutic strategies. PGG inhibited AChE activity in the test tube as well as in SK-N-SH cells. In addition, PGG induced protein and mRNA expression of brain-derived neurotrophic factor (BDNF), which is a mammalian neurotrophin that plays major roles in the development, maintenance, repair, and survival of neuronal populations. As one of the underlying molecular mechanisms that induce BDNF expression, PGG induced the activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII)-cAMP response element binding protein (CREB) pathway. In conclusion, PGG may be an useful material for improving cognitive function.

Processor allocation strategy for MIMD hypercube (MIMD 하이퍼큐브의 프로세서 할당에 관한 연구)

  • 이승훈;최상방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.1-10
    • /
    • 1994
  • In this paper, we propose a processor allocation algorithm using the PGG(Packed Gray code Group) for the MIMD hypercube. The number of k-D subcubes in an n-cube is C(n.k) en-k. When the PGG is employed in the processor allocation, C(n, k) PGG's are required to recognize all the k-D subcubes in an n-cube. from the simulation we find that the capability of processor allocation using only 40% of C(n, k) PGG's is about the same as that of the allocation using all the PGG's.

  • PDF

Anti-Allergic Effect of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose on RBL-2H3 Cells (RBL-2H3 세포에서 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose의 항알레르기 효과)

  • Kim, Yoon Hee;Choi, Ye Rang;Kim, Ji Young;Kwak, Sang Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.613-618
    • /
    • 2016
  • 1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucose (PGG) is a gallotannin isolated from various plants such as Galla Rhois. In a previous study, it was reported that PGG has anti-allergic effects by inhibiting interleukin (IL)-4 signaling in B cells. However, the effect of PGG on basophilic cells remains unclear. Therefore, the aim of this study was to investigate the inhibitory effect of PGG on mitogen and calcium ionophore-induced allergic responses. PGG had no effect on proliferation and cytotoxicity of RBL-2H3 cells. PGG significantly suppressed cell degranulation (histamine and ${\beta}-hexosaminidase$) as well as inflammatory cytokine production such as IL-4 and tumor necrosis factor-${\alpha}$. The underlying mechanism of PGG on these anti-allergic actions was correlated with inhibition on translocation of nuclear factor-${\kappa}B$ from the cytosol to nucleus. These data suggest that PGG is a potentially effective functional compound for prevention of allergic diseases.

Anti-Inflammatory Effects of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in LPS-Stimulated Macrophages (LPS로 자극한 대식세포에서 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose의 염증 억제 효과)

  • Lee, Hee Won;Kang, Ye Rim;Bae, Min Seo;Kim, Yoon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.409-416
    • /
    • 2017
  • 1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucose (PGG) is a gallotannin isolated from Galla Rhois. In a previous study, PGG was shown to suppress the allergic response by attenuating immunoglobulin E production both in vitro and in vivo. However, the effect of PGG on bacteria-induced inflammation at physiological concentration remains unclear. Therefore, the aim of this study was to investigate the effect of PGG on lipopolysaccharide (LPS)-stimulated macrophages. PGG inhibited release of nitric oxide (NO) and prostaglandin $E_2$ by alleviating protein expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Furthermore, PGG suppressed the release of interleukin-6 and tumor necrosis factor-${\alpha}$ induced by LPS. Further study indicated that PGG blocked translocation of the p65 subunit of nuclear factor-${\kappa}B$ from the cytosol into the nucleus, which is one of the underlying mechanisms of the anti-inflammatory action of PGG. Collectively, these data suggest that PGG might be useful for the treatment of inflammatory disease.

The Longevity Properties of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose from Curcuma longa in Caenorhabditis elegans

  • Ahn, Dalrae;Cha, Dong Seok;Lee, Eun Byeol;Kim, Ban Ji;Lee, So Yeon;Jeon, Hoon;Ahn, Min-Sil;Lim, Hye Won;Lee, Heon Yong;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.442-446
    • /
    • 2013
  • Here in this study, we isolated 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (PGG) from Curcuma longa L. and elucidated the lifespan-extending effect of PGG using Caenorhabditis elegans model system. In the present study, PGG demonstrated potent lifespan extension of worms under normal culture condition. Then, we determined the protective effects of PGG on the stress conditions such as thermal and oxidative stress. In the case of heat stress, PGG-treated worms exhibited enhanced survival rate, compared to control worms. In addition, PGG-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of PGG-mediated increased lifespan and stress resistance of worms, we investigated whether PGG might alter superoxide dismutase (SOD) activities and intracellular ROS levels. Our results showed that PGG was able to elevate SOD activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.

Studies on the Anti-apoptotic Effect of the Mudanpi (목단피가 세포고사의 억제에 미치는 영향에 관한 연구)

  • Kwon Duck Yun;Bae Young Chun;Lee Sang Min;Yoo Kwan Seok;Joo Jong Cheon;Kim Kyung Yo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1071-1077
    • /
    • 2004
  • Mudanpi (Cortex Moutan Radicis; the root cortex of Paeonia suffruticosa Andrews) is an important Chinese crude drug used in many oriental prescriptions. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG), a major component of this crude drug, has been shown to possess potent antioxidant, anti-mutagenic and anti-proliferative effects. In this study, I examined whether PGG could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 expression and HO activity. Exposure of Neuro 2A cells to PGG (10-50μM) resulted in a concentration- and time-dependent induction of HO-1 mRNA, and protein expressions and heme oxygenase activity. PGG protected the cells from hydrogen peroxide-induced cell death. The protective effect of PGG on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor. These results indicate that PGG is a potent inducer of HO-1 and HO-1 induction is responsible for the PGG-mediated cytoprotection against oxidative damage.

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Activity by $1,2,3,4,6-Penta-Ο-galloyl-{\beta}-D-glucose$ in Murine Macrophage Cells

  • Lee, Sung-Jin;Lee, Ik-Soo;Mar, Woong-Chon
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.832-839
    • /
    • 2003
  • Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E$_2$ (PGE$_2$), which play key roles in the processes of inflammation and carcinogenesis. The root of Paeonia lactiflora Pall., and the root cortex of Paeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) isolated from the root of Paeonia lactiflora Pall. on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gallate and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigallocatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS ($IC_{50}$ = 18 $\mu\textrm{g}/mL$) and COX-2 inhibitory activity (PGE$_2$: $IC_{50}$ = 8 $\mu\textrm{g}/mL$ and PGD$_2$: $IC_{50}$ = 12 $\mu\textrm{g}/mL$), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.

Recognition and management of palatogingival groove for tooth survival: a literature review

  • Kim, Hee-Jin;Choi, Yoorina;Yu, Mi-Kyung;Lee, Kwang-Won;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.77-86
    • /
    • 2017
  • Palatogingival groove (PGG) is an anomaly in the maxillary anterior teeth, often accompanied by the area of bony destruction adjacent to the teeth with no carious or traumatic history. The hidden trap in the tooth can harbor plaque and bacteria, resulting in periodontal destruction with or without pulpal pathologic change. Related diseases can involve periodontal destruction, combined endodontic-periodontal lesions, or separate endodontic and periodontal lesions. Disease severity and prognosis related to PGG depend on several factors, including location, range, depth, and type of the groove. Several materials have been used and recommended for cases of extensive periodontal destruction from PGG to remove and block the inflammatory source and recover the health of surrounding periodontal tissues. Even in cases of severe periodontal destruction, several studies have reported favorable treatment outcomes with proper management. With new options in diagnosis and treatment, clinicians need a detailed understanding of the characteristics, treatment, and prognosis of PGG to successfully manage the condition.

Differential Cytotoxicity of Penta-O-galloyl-β-D-glucose in Human Cancer and Normal Cell Lines of Various Origins (사람의 다양한 조직에서 기원하는 암세포 및 정상세포에 대한 penta-O-galloyl-β-D-glucose의 세포독성 효과)

  • Lee, Hyeon-Jeong;Kim, Min-Gyeong;Lee, Song-Yeong;Song, Min-Hyock;Kim, Yoon-Dong;Ha, Jeong-Sook;Jeong, Gie-Joon;Rho, Gyu-Jin;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1320-1329
    • /
    • 2016
  • The present study examined the cytotoxic effects of 1, 2, 3, 4, 6-penta-O-galloyl-${\beta}$-D-glucose (PGG), known as the pentahydroxy gallic acid ester of glucose, in the various human cancer cell lines (A-549, MDA-MB-231, U87-MG, MCF-7 and PANC-1), normal MRC-5 fetal fibroblasts, and dental papilla tissue- derived mesenchymal stem cells (DPSCs). Significantly (p<0.05) lower half maximal inhibitory concentration ($IC_{50}$) values were observed in the A-549 and MDA-MB-231 cells showing a high proliferation capacity, compared with other cancer and normal cell lines with a relatively low proliferation capacity. The population doubling time (PDT) was significantly (p<0.05) higher in the $10{\mu}M$ PGG-treated cell lines than those of untreated control cell lines. The present study demonstrated that the $IC_{50}$ value increases proportionally to the extending PDT. A high cell number with senescence-associated ${\beta}-galactosidase$ activity was also observed in the $10{\mu}M$ PGG-treated cells compared with those of untreated control cells. Moreover, the level of telomerase activity was significantly (p<0.05) decreased with $10{\mu}M$ PGG treatment, especially in A-549 and MDA-MB-231 cells showing a high proliferation capacity. Based on these observations, PGG could serve as a potent agent for cancer chemotherapy, as its treatment was more effective in cells with a high proliferation capacity.

Photoprotective Potential of Penta-O-Galloyl-β-D-Glucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin

  • Kim, Byung-Hak;Choi, Mi Sun;Lee, Hyun Gyu;Lee, Song-Hee;Noh, Kum Hee;Kwon, Sunho;Jeong, Ae Jin;Lee, Haeri;Yi, Eun Hee;Park, Jung Youl;Lee, Jintae;Joo, Eun Young;Ye, Sang-Kyu
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.982-990
    • /
    • 2015
  • Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-${\kappa}B$ signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.