DOI QR코드

DOI QR Code

The Longevity Properties of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose from Curcuma longa in Caenorhabditis elegans

  • Received : 2013.09.12
  • Accepted : 2013.11.04
  • Published : 2013.11.30

Abstract

Here in this study, we isolated 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (PGG) from Curcuma longa L. and elucidated the lifespan-extending effect of PGG using Caenorhabditis elegans model system. In the present study, PGG demonstrated potent lifespan extension of worms under normal culture condition. Then, we determined the protective effects of PGG on the stress conditions such as thermal and oxidative stress. In the case of heat stress, PGG-treated worms exhibited enhanced survival rate, compared to control worms. In addition, PGG-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of PGG-mediated increased lifespan and stress resistance of worms, we investigated whether PGG might alter superoxide dismutase (SOD) activities and intracellular ROS levels. Our results showed that PGG was able to elevate SOD activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.

Keywords

References

  1. Abele, D., Heise, K., Portner, H. O. and Puntarulo, S. (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831-1841.
  2. Ahn, D. R., Lee, E. B., Ahn, M. S., Lim, H. W., Xing, M. M., Tao, C., Yang, J. H. and Kim, D. K. (2012) Antioxidant constituents of the aerial parts of Curcuma longa. Kor. J. Pharmacogn. 43, 274-278.
  3. Adachi, H., Konishi, K. and Horikoshi, I. (1989) The effects of 1,2,3, 4,6-penta-O-galloyl-beta-D-glucose on rat liver mitochondrial respiration. Chem. Pharm. Bull. 37, 1341-1344. https://doi.org/10.1248/cpb.37.1341
  4. Adachi, H. and Ishii, N. (2000) Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J. Gerontol.A Biol. Sci. Med. Sci. 55, B280-285. https://doi.org/10.1093/gerona/55.6.B280
  5. Bokov, A., Chaudhuri, A. and Richardson, A. (2004) The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125, 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  6. Bowler, R. P., Sheng, H., Enghild, J. J., Pearlstein, R. D., Warner, D. S. and Crapo, J. D. (2002) A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic. Biol. Med. 33, 1141-1152. https://doi.org/10.1016/S0891-5849(02)01008-0
  7. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
  8. Collins, J. J., Evason, K. and Kornfeld, K. (2006) Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol. 41, 1032-1039. https://doi.org/10.1016/j.exger.2006.06.038
  9. Choi, B. M., Kim, H. J., Oh, G. S., Pae, Ho. O., Oh, H., Jeong, S., Kwon, T. O., Kim, Y. M. and Chung, H. T. (2002) 1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucose protects rat neuronal cells (Neuro 2A) from hydrogen peroxide-mediated cell death via the induction of heme oxygenase-1. Neurosci. Lett. 328, 185-189. https://doi.org/10.1016/S0304-3940(02)00513-X
  10. Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. https://doi.org/10.1038/35041687
  11. Glenn, C. F., Chow, D. K., David, L., Cooke, C. A., Gami, M. S., Iser, W. B., Hanselman, K. B., Goldberg, I. G. and Wolkow, C. A. (2004) Behavioral defi cits during early stages of aging in Caenorhabditis elegans result from locomotory defi cits possibly linked to muscle frailty. J. Gerontol. A Biol. Sci. Med. Sci. 59, 1251-1260. https://doi.org/10.1093/gerona/59.12.1251
  12. Guarente, L. and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408, 255-262. https://doi.org/10.1038/35041700
  13. Harrington, L. A. and Harley, C. B. (1988) Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech. Ageing Dev. 43, 71-78. https://doi.org/10.1016/0047-6374(88)90098-X
  14. Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, P. A., Listner, K. M., Sakano, Y., Paupard, M. C., Hall, D. H. and Driscoll, M. (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814. https://doi.org/10.1038/nature01135
  15. Hwang, A. B., Jeong, D. E. and Lee, S. J. (2012) Mitochondria and organismal longevity. Curr. Genomics G 13, 519-532. https://doi.org/10.2174/138920212803251427
  16. Ishii, N., Senoo-Matsuda, N., Miyake, K., Yasuda, K., Ishii, T., Hartman, P. S. and Furukawa, S. (2004) Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech. Ageing Dev. 125, 41-46. https://doi.org/10.1016/j.mad.2003.10.002
  17. Kampkotter, A., Gombitang Nkwonkam, C., Zurawski, R. F., Timpel, C., Chovolou, Y., Watjen, W. and Kahl, R. (2007) Effects of the fl avonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol. 81, 849-858. https://doi.org/10.1007/s00204-007-0215-4
  18. Kenyon, C. J. (2010) The genetics of ageing. Nature 464, 504-512. https://doi.org/10.1038/nature08980
  19. Kitabatake, T., Tabo, H., Matsunaga, H. and Haqinaka, J. (2013) Preraration of monodisperse curcumin-imprinted polymer by precipitation polymerzation and its application for the extraction of curcuminoids from Curcuma longa L. Anal. Bioanal. Chem. 405, 6555-6561. https://doi.org/10.1007/s00216-013-7088-6
  20. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328, 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  21. Liu, Y. and Nair, M. G. (2012) Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food Chem. 135, 634-640. https://doi.org/10.1016/j.foodchem.2012.04.129
  22. Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U.S.A. 92, 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  23. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55, 4169-4177. https://doi.org/10.1021/jm2014315
  24. Oliveira, B. F., Nogueira-Machado, J. A. and Chaves, M. M. (2010) The role of oxidative stress in the aging process. ScientificWorld Journal 10, 1121-1128. https://doi.org/10.1100/tsw.2010.94
  25. Petrascheck, M., Ye, X. and Buck, L. B. (2007) An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450, 553-556. https://doi.org/10.1038/nature05991
  26. Roth, G. N., Chandra, A. and Nair, M. G. (1998) Novel bioactivities of Curcuma longa constituents. J. Nat. Prod. 61, 542-545. https://doi.org/10.1021/np970459f
  27. Saul, N., Pietsch, K., Sturzenbaum, S. R., Menzel, R. and Steinberg, C. E. (2011) Diversity of polyphenol action in Ceanorhabditis elegans: between toxicity and longevity. J. Nat. Prod. 74, 1713-1720. https://doi.org/10.1021/np200011a
  28. Uysal, U., Seremet, S., Lamping, J. M., Adams, J. M., Liu, D. Y., Swerdlow, R. H. and Aires, D. J. (2013) Comsumption of polyphemol plants may slow aging and associated diseases. Curr. Pharm. Des. 19, 6094-6111. https://doi.org/10.2174/1381612811319340004
  29. Wu, Z., Smith, J. V., Paramasivam, V., Butko, P., Khan, I., Cypser, J. R. and Luo, Y. (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell. Mol. Biol. (Noisy-le-Grand) 48, 725-731.
  30. Zhang, J., Li, L., Kim, S. H., Hagerman, A. E. and LU, J. (2009) Anticancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm. Res. 26, 2066-2080. https://doi.org/10.1007/s11095-009-9932-0

Cited by

  1. Therapeutical Effects and Mechanism of Salubrinal Combined with Ulinastatin on Treating Paraquat Poisoning vol.70, pp.3, 2014, https://doi.org/10.1007/s12013-014-0095-1
  2. Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification vol.22, pp.5, 2014, https://doi.org/10.4062/biomolther.2014.084
  3. Neuroprotection and antioxidative effects of Sijunzi Tang Decoction in the nematode Caenorhabditis elegans vol.8, pp.4, 2016, https://doi.org/10.1016/j.eujim.2016.03.009
  4. Chemical constituents and biological research on plants in the genusCurcuma vol.57, pp.7, 2017, https://doi.org/10.1080/10408398.2016.1176554
  5. Induction of GNMT by 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside through proteasome-independent MYC downregulation in hepatocellular carcinoma vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37292-1
  6. 1,2,3,4,6‐Penta‐ O ‐galloyl‐β‐ D ‐glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II‐i vol.176, pp.12, 2013, https://doi.org/10.1111/bph.14583
  7. Evaluation of Antimicrobial Activity of Triphala Constituents and Nanoformulation vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/6976973