Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.11.1320

Differential Cytotoxicity of Penta-O-galloyl-β-D-glucose in Human Cancer and Normal Cell Lines of Various Origins  

Lee, Hyeon-Jeong (Gyeongnam Science High School)
Kim, Min-Gyeong (Gyeongnam Science High School)
Lee, Song-Yeong (Gyeongnam Science High School)
Song, Min-Hyock (Gyeongnam Science High School)
Kim, Yoon-Dong (Gyeongnam Science High School)
Ha, Jeong-Sook (Department of Biology Education, College of Education, Gyeongsang National University)
Jeong, Gie-Joon (Department of Biology Education, College of Education, Gyeongsang National University)
Rho, Gyu-Jin (OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University)
Jeon, Byeong-Gyun (Department of Biology Education, College of Education, Gyeongsang National University)
Publication Information
Journal of Life Science / v.26, no.11, 2016 , pp. 1320-1329 More about this Journal
Abstract
The present study examined the cytotoxic effects of 1, 2, 3, 4, 6-penta-O-galloyl-${\beta}$-D-glucose (PGG), known as the pentahydroxy gallic acid ester of glucose, in the various human cancer cell lines (A-549, MDA-MB-231, U87-MG, MCF-7 and PANC-1), normal MRC-5 fetal fibroblasts, and dental papilla tissue- derived mesenchymal stem cells (DPSCs). Significantly (p<0.05) lower half maximal inhibitory concentration ($IC_{50}$) values were observed in the A-549 and MDA-MB-231 cells showing a high proliferation capacity, compared with other cancer and normal cell lines with a relatively low proliferation capacity. The population doubling time (PDT) was significantly (p<0.05) higher in the $10{\mu}M$ PGG-treated cell lines than those of untreated control cell lines. The present study demonstrated that the $IC_{50}$ value increases proportionally to the extending PDT. A high cell number with senescence-associated ${\beta}-galactosidase$ activity was also observed in the $10{\mu}M$ PGG-treated cells compared with those of untreated control cells. Moreover, the level of telomerase activity was significantly (p<0.05) decreased with $10{\mu}M$ PGG treatment, especially in A-549 and MDA-MB-231 cells showing a high proliferation capacity. Based on these observations, PGG could serve as a potent agent for cancer chemotherapy, as its treatment was more effective in cells with a high proliferation capacity.
Keywords
Cancer cells; human; PGG; proliferation; telomerase activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Falandry, C., Bonnefoy, M., Freyer, G. and Gilson, E. 2014. Biology of cancer and aging: a complex association with cellular senescence. J. Clin. Oncol. 32, 2604-2610.   DOI
2 Flavin, R., Peluso, S., Nguyen, P. L. and Loda, M. 2010. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 6, 551-562.   DOI
3 Funayama, R. and Ishikawa, F. 2007. Cellular senescence and chromatin structure. Chromosoma 116, 431-440.   DOI
4 Ghate, N. B., Chaudhuri, D., Sarkar, R., Sajem, A. L., Panja, S., Rout, J. and Mandal, N. 2013. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS One 8, e82293.   DOI
5 Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828.   DOI
6 Hu, H., Lee, H. J., Jiang, C., Zhang, J., Wang, L., Zhao, Y., Xiang, Q., Lee, E. O., Kim, S. H. and Lu, J. 2008. Penta- 1,2,3,4,6-O-galloyl-beta-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol. Cancer Ther. 7, 2681-2691.   DOI
7 Hu, H., Zhang, J., Lee, H. J., Kim, S. H. and Lu, J. 2009. Penta-O-galloyl-beta-D-glucose induces S- and G(1)-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis 30, 818-823.   DOI
8 Huh, J. E., Lee, E. O., Kim, M. S., Kang, K. S., Kim, C. H., Cha, B. C., Surh, Y. J. and Kim, S. H. 2005. Penta-O-galloyl- beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase- 2 and mitogen-activated protein kinase pathways. Carcinogenesis 26, 1436-1445.   DOI
9 Jeon, B. G., Kumar, B. M., Kang, E. J., Maeng, G. H., Lee, Y. M., Hah, Y. S., Ock, S. A., Kwack, D. O., Park, B. W. and Rho, G. J. 2011. Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression. Anticancer Res. 31, 4315-4328.
10 Jeon, B. G., Jang, S. J., Park, J. S., Subbarao, R. B., Jeong, G. J., Park, B. W. and Rho, G. J. 2015. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim. Cells Syst. 19, 321-331.   DOI
11 Jeon, B. G., Kwack, D. O. and Rho, G. J. 2011. Variation of telomerase activity and morphology in porcine mesenchymal stem cells and fibroblasts during prolonged in vitro culture. Anim. Biotechnol. 22, 197-210.   DOI
12 Knobloch, M., Braun, S. M., Zurkirchen, L., von Schoultz, C., Zamboni, N., Araúzo-Bravo, M. J., Kovacs, W. J., Karalay, O., Suter, U., Machado, R. A., Roccio, M., Lutolf, M. P., Semenkovich, C. F. and Jessberger, S. 2013. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226-230.
13 Kuhajda, F. P., Pizer, E. S., Li, J. N., Mani, N. S., Frehywot, G. L. and Townsend, C. A. 2000. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl. Acad. Sci. USA 97, 3450-3454.   DOI
14 Mender, I., Gryaznov, S. and Shay, J. W. 2015. A novel telomerase substrate precursor rapidly induces telomere dysfunction in telomerase positive cancer cells but not telomerase silent normal cells. Oncoscience 22, 693-695.
15 Kwon, T. R., Jeong, S. J., Lee, H. J., Lee, H. J., Sohn, E. J., Jung, J. H., Kim, J. H., Jung, D. B., Lu, J. and Kim, S. H. 2012. Reactive oxygen species-mediated activation of JNK and down-regulation of DAXX are critically involved in penta-O-galloyl-beta-d-glucose-induced apoptosis in chronic myeloid leukemia K562 cells. Biochem. Biophys. Res. Commun. 424, 530-537.   DOI
16 Lee, S. J., Lee, H. M., Ji, S. T., Lee, S. R., Mar, W., Kim, J. H., Jung, D. B., Lu, J. and Kim, S. H. 2012. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett. 208, 89-94.
17 Limame, R., Wouters, A., Pauwels, B., Fransen, E., Peeters, M., Lardon, F., De Wever, O. and Pauwels, P. 2012. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One 7, e46536.   DOI
18 Maida, Y. and Masutomi, K. 2015. Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase. Cancer Sci. 106, 1486-1492.   DOI
19 Makarevic, J., Rutz, J., Juengel, E., Kaulfuss, S., Tsaur, I., Nelson, K., Pfitzenmaier, J., Haferkamp, A. and Blaheta, R. A. 2014. Amygdalin influences bladder cancer cell adhesion and invasion in vitro. PLoS One 9, e110244.   DOI
20 Abdullah, A. S., Mohammed, A. S., Abdullah, R., Mirghani, M. E. and Al-Qubaisi, M. 2014. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. BMC Complement. Altern. Med. 25, 199.
21 Cao, Y., Himmeldirk, K. B., Qian, Y., Ren, Y., Malki, A. and Chen, X. 2014. Biological and biomedical functions of Penta-O-galloyl-D-glucose and its derivatives. J. Nat. Med. 68, 465-472.   DOI
22 Moon, J. Y., Kim, S. W., Yun, G. M., Lee, H. S., Kim, Y. D., Jeong, G. J., Ullah, I., Rho, G. J. and Jeon, J. B. 2015. Inhibition of cell growth and down-regulation of telomerase activity by amygdalin in human cancer cell lines. Anim. Cells Syst. 19, 295-304.   DOI
23 Pan, M. H., Lin, J. H., Lin-Shiau, S. Y. and Lin, J. K. 1999. Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells. Eur. J. Pharmacol. 381, 171-183.   DOI
24 Pandey, P. R., Liu, W., Xing, F., Fukuda, K. and Watabe, K. 2013. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat. Anticancer Drug Discov. 7, 185-197.
25 Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., Greider, C. W. and Harley, C. B. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114-10118.   DOI
26 Artandi, S. E. and DePinho, R. A. 2010. Telomeres and telomerase in cancer. Carcinogenesis 31, 9-18.   DOI
27 Chai, Y., Lee, H. J., Shaik, A. A., Nkhata, K., Xing, C., Zhang, J., Jeong, S. J., Kim, S. H. and Lu, J. 2010. Penta-O-galloyl-beta- D-glucose induces G1 arrest and DNA replicative S-phase arrest independently of cyclin-dependent kinase inhibitor 1A, cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple negative xenograft growth. Breast Cancer Res. 12, R67.   DOI
28 Cryan, L. M., Bazinet, L., Habeshian, K. A., Cao, S., Clardy, J., Christensen, K. A. and Rogers, M. S. 2013. 1,2,3,4,6- Penta-O-galloyl-${\beta}$-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J. Med. Chem. 56, 1940-1945.   DOI
29 Dikmen, Z. G., Gellert, G. C., Jackson, S., Gryaznov, S., Tressler, R., Dogan, P., Wright, W. E. and Shay, J. W. 2005. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866-7873.   DOI
30 Swinnen, J. V., Roskams, T., Joniau, S., Van Poppel, H., Oyen, R., Baert. L., Heyns, W. and Verhoeven, G. 2002. Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int. J. Cancer 98, 19-22.   DOI
31 Veigel, D., Wagner, R., Stubiger, G., Wuczkowski, M., Filipits, M., Horvat, R., Benhamu, B., Lopez-Rodriguez, M. L., Leisser, A., Valent, P., Grusch, M., Hegardt, F. G., Garcia, J., Serra, D., Auersperg, N., Colomer, R. and Grunt, T. W. 2015. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int. J. Cancer 136, 2078-2090.   DOI
32 Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387, 569-572.   DOI
33 Dong, Y., Yin, S., Jiang, C., Luo, X., Guo, X., Zhao, C., Fan, L., Meng, Y., Lu, J., Song, X., Zhang, X., Chen, N. and Hu, H. 2014. Involvement of autophagy induction in penta-1,2,3,4,6-O-galloyl-${\beta}$-D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy 10, 296-310.   DOI
34 Wong, A. S., Che, C. M. and Leung, K. W. 2015. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat. Prod. Rep. 32, 256-272.   DOI
35 Zhao, W., Wang, Y., Hao, W., Zhao, M. and Peng, S. 2015. In vitro inhibition of fatty acid synthase by 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose plays a vital role in anti-tumour activity. Biochem. Biophys. Res. Commun. 445, 346-351.