• Title/Summary/Keyword: PFD controller

Search Result 5, Processing Time 0.022 seconds

A Case Study of SIL Analysis for Single Station Controller in Nuclear Power Plant Based on IEC 61508 (IEC 61508에 기반한 원자력 발전소용 안전 등급 제어기의 SIL 분석에 대한 사례연구)

  • Kim, Gun Myung
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Purpose: It is not easy to suggest a quantitative data related to safety analysis. The objective of this paper is to propose a method of Safety Integrity Level (SIL) analysis and to suggest a SIL analysis result for single station controller in nuclear power plant based on IEC 61508. Methods: The Failure Modes and Effects Diagnostic Analysis (FMEDA) and average probability of failure on demand (PFD) are used for SIL assessment. Results: A SIL of single station controller is evaluated 4 by a reliability analysis results and PFD. Conclusion: A SIL analysis method and result for single station controller based on IEC 61508 are proposed in this paper. It can applicable for a manufacturer data in safety-related system.

Improvement of the Response Characteristics Using the Fuzzy-PLL Controller (퍼지-PLL 제어기를 이용한 응답특성 개선)

  • Cho, Jeong-Hwan;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.175-181
    • /
    • 2005
  • This paper proposes the fuzzy-PLL control system for fast response time and precision control of automation systems. The conventional PLL has not only a jitter noise caused from such a demerit of the wide dead zone, but also a long delay interval that makes a high speed operation unable. In order to solve the problems, the proposed system, which provides the improvement in terms of the control region in high speed and precision control, first used the fuzzy control method for fast response time and when the error reaches the preset value, used the PLL method designing new PFD for precision control. The new designed multi-PFD improves the dead zone, jitter noise and response characteristics, which is consists of P-PFD(Positive edge triggered PFD) and N-PFD(Negative edge triggered PFD) and can improve response characteristics to increase PFD gain.

Hybrid Adaptive Controller Improving The Jitter Noise (지터 잡음을 개선한 하이브리드 적응제어기)

  • Cho, Jeong-Hwan;Hong, Kwon-Eui;Ko, Sung-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.108-114
    • /
    • 2009
  • This paper proposes the new hybrid adaptive controller for fast response time and precision control of automation system which exist deadzone or non-linearity of system. The proposed system, which provides the improvement in terms of the control region in high speed and precision control, first used the fuzzy control method for fast response time and when the error reaches the preset value, used the PLL method designing PFD improved jitter for precision control. The new designed PFD improves the jitter noise and response characteristic without generating deadzone. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably improved performance in the position control of automation system.

A 1.25 GHz Low Power Multi-phase PLL Using Phase Interpolation between Two Complementary Clocks

  • Jin, Xuefan;Bae, Jun-Han;Chun, Jung-Hoon;Kim, Jintae;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.594-600
    • /
    • 2015
  • A 1.25 GHz multi-phase phase-rotating PLL is proposed for oversampling CDR applications and implemented with a low power and small area. Eight equidistant clock phases are simultaneously adjusted by the phase interpolator inside the PLL. The phase interpolator uses only two complementary clocks from a VCO, but it can cover the whole range of phase from $0^{\circ}$ to $360^{\circ}$ with the help of a PFD timing controller. The output clock phases are digitally adjusted with the resolution of 25 ps and both INL and DNL are less than 0.44 LSB. The proposed PLL was implemented using a 110 nm CMOS technology. It consumes 3.36 mW from 1.2 V supply and occupies $0.047mm^2$. The $jitter_{rms}$ and $jitter_{pk-pk}$ of the output clock are 1.91 ps and 18 ps, respectively.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.