• Title/Summary/Keyword: PFC boost converter

Search Result 179, Processing Time 0.023 seconds

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Failure Prediction Monitoring of DC Electrolytic Capacitors in Half-bridge Boost Converter (단상 하프-브리지 부스트 컨버터에서 DC 전해 커패시터의 고장예측 모니터링)

  • Seo, Jang-Soo;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • DC electrolytic capacitor is widely used in the power converter including PWM inverter, switching power supply and PFC Boost converter system because of its large capacitance, small size and low cost. In this paper, basic characteristics of DC electrolytic capacitor vs. frequency is presented and the real-time estimation scheme of ESR and capacitance based on the bandpass filtering is adopted to the single phase boost converter of uninterruptible power supply to diagnose its split dc-link capacitors. The feasibility of this real-time failure prediction monitoring system is verified by the computer simulation of the 5[kW] singe phase PFC half-bridge boost converter.

Study of DCM Interleaved Boost PFC Converter without the Detection of the Inductor Current (인덕터 전류검출이 필요없는 불연속모드 인터리브드 PFC 부스트 컨버터의 연구)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.303-308
    • /
    • 2016
  • A light-emitting diode (LED) has been increasingly applied to various industrial fields and general lightings because of its high efficiency, low power consumption, environment-friendly characteristic and long lifetime. To drive this LED lighting, various types of power converters have been applied. Also, power factor correction (PFC) techniques play an important role in the power supply technology. In this paper, design and control of a DCM interleaved boost PFC converter is discussed. The proposed converter can reduce current ripples at input and output side by cancelling an each phase of inductor currents. Since the IC does not require the auxiliary winding of inductor for current detection, simple PFC circuit is achieved. Therefore, it contributes to increase efficiency and downsize the whole system volume, cost. Also, the performance of the proposed system is demonstrated through experiments.

New Active Snubber Boost PFC Converter for Efficiency Improvement in Home Appliances Applications

  • Jeong, In Wha;Park, Mingyu;Um, Kee-Ju;Heo, Chang Jae;Lee, JunHo;Kim, Kwangsoo;Suh, Bum-Seok;Kim, Yong-Wook;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.289-290
    • /
    • 2012
  • This paper proposes a new active snubber boost PFC converter to provide a zero-voltage-switching (ZVS) turn-on condition and reduce electromagnetic interference (EMI) noise in home appliances and renewable energy applications, including solar or fuel cell electric systems. The proposed active snubber circuit enables a main boost switch of the boost-type PFC or grid converter to turn on under a ZVS condition and reduce the switching losses of the main boost switch. Moreover, for the purpose of a specialized intelligent power module (IPM) fabrication, the proposed boost circuit is designed to satisfy some design aspects such as space saving, low cost, and easy fabrication. Simulation and experimental results of a 2kW IPM boost-type PFC converter are provided to verify the effectiveness of the proposed active snubber boost circuit.

  • PDF

Characteristics of Boost Active Power Factor Correction Converter (부스트 능동 역률개선 컨버터의 특성)

  • Jang, Jun-Young;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1152-1159
    • /
    • 2015
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The PFC circuit with a boost converter using an input power source is studied in this paper. In a boost PFC circuit, there are two feedback control loops: a current feedback loop and a voltage feedback loop. In this paper, the regulation performance gained by using the output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of the designed boost PFC circuit is confirmed by both MATLAB simulation and experimental results.

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.

Development of Enhanced Interleaved PFC Boost Converter typed 650V Intelligent Power Module for up to 10kW HVAC Systems (10kW급 HVAC 시스템을 위한 Enhanced Interleaved PFC Boost 컨버터 형태의 650V IPM 개발)

  • Lee, Kihyun;Hong, Seunghyun;Kim, Taehyun;Jeong, Jinyong;Kwon, Taesung
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.536-538
    • /
    • 2018
  • This paper introduces an enhanced interleaved (IL) PFC (Power Factor Correction) boost converter typed 650V Intelligent Power Module (IPM), which is fully optimized hybrid IGBT converter modules; Silicon (Si) IGBT and Silicon Carbide (SiC) diode, for up to 10kW HVAC (Heating, Ventilation, and Air Conditioning) systems. It utilizes newly developed $4^{th}$ Generation Field Stop (FS) trench IGBTs, $EXTREMEFAST^{TM}$ anti-paralleled diodes, SiC Junction Barrier Schottky (JBS) diodes, Bridge rectifiers, Multi-function LVIC, and Built-in thermistor provide good reliable characteristics for the entire system. This module also takes technical advantage of DBC (Direct Bonded Copper) substrate for the better thermal performance. It is shown that the Si IGBT/SiC diode hybrid IL PFC module can achieve excellent EMI performance and greatly enhance the power handling capability or switching frequency of various applications compared to the Si IGBT/Diode. This paper provides an overall description of the newly developed 650V/50A Hybrid SiC IL PFC IPM product.

  • PDF

A Study On The Power Factor Correction Of The Boost Converter Without The Input Current Measurement (입력 전류의 측정이 필요없는 Boost 컨버터의 역률 보정에 관한 연구)

  • Cho, Sang-Jun;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.376-378
    • /
    • 1996
  • This paper presents a new PFC control method which replaces a fast line current measurement with a filtered load current measurement. Using the power balance relation between the input and the output of the boost converter. the input current can be described as the function of load current. Thus the PWM signal which effects the switching control of the boost converter is generated using the PFC input voltage, the PFC output voltage and the load current as input variables. By using a filter between the bridge rectifier and a dc-to-dc converter, the input voltage of the dc-to-dc converter is forced to always maintain above zero volt. Then the input current traces a sinewave in phase. The proposed scheme accomplishes a very high power factor and a low harmonic distortion of the line current. The validity of this scheme is demonstrated through simulation.

  • PDF

Analysis of the CRM PFC Converter Considering Semiconductor Parasitic Element (반도체 소자의 기생성분을 고려한 CRM PFC 컨버터의 해석)

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.145-146
    • /
    • 2016
  • 일반적인 boost PFC 컨버터는 한 개의 스위칭 소자를 사용하고 구조가 간단하지만 높은 도통손실과 스위칭 손실 때문에 낮은 효율을 갖는다. bridgeless boost PFC 컨버터는 일반적인 boost PFC 에 비해 낮은 손실을 갖는 이점이 있다. 또한 컨버터의 동작 모드 중 CRM 방식은 낮은 스위칭 손실을 갖는 이 점이 있다. 본 논문에서는 이러한 CRM 모드로 동작하는 bridgeless boost PFC 컨버터를 해석하는 경우 기존의 방법으로 해석하여 구현하면 주파수가 커지는 영역에서 오차가 커지게 된다. 따라서 본 논문에서는 반도체 스위치의 기생 커패시터를 추가하여 해석하는 것을 제안하였다.

  • PDF