• Title/Summary/Keyword: PEG treatment

Search Result 289, Processing Time 0.031 seconds

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

Construction of Starch-assimilating and Ethanol-fermenting Yeast by Protoplast Fusion (원형질 융합에 의한 전분으로부터 에탄올 발효효모균주의 개량)

  • 이혜정;이지나;천경숙;박소영;마은애;민경희
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.546-552
    • /
    • 1992
  • Ethanol-tolerant strain, S. eerevisiae BUI a26 ($alc^r thr^-$) and gJucoamylase-producing strain, S diastatieus AI5a6 (STA+ hom-) were prepared by means of genetic manipulation, Protoplast fusion was carried out to introduce STA gene from AI5a6 strain to BUla26 strain, Protoplast formation was shown at 0,8 M sorbitol and 200 Jig/ml to 400 Jig/ml zymolyase treatment for 2 hours incubation, Fusion frequency was $ 3.25 {\times} 10^{-3}$ to the regenerated protoplast number using PEG 6000 for 90 min incubation. The excellent fusants with genotype of STA- $alc^r thr^-$ hom+/STA+ ($alc^s thr^+$ hom- (2n), F7 and FIO, were selected by ethanol-tolerant, ethanol fermentation, and glucoamylase production tests, Glucoamylase production of AI5a6 showed 2,7 units, but 4.2 or 8.4 units for F7 or FIO fusant at $30^{\circ}C$, Ethanol fermentation from 32% glucose by BUla26 was 14,0%(v/v) in fermentaion medium for 5 days incubation, but 14.5% or 15,0% for F7 or FIO strain, respectively. Ethanol fermentation from 5% starch was 2,0% by F7, or 1.8% by FIO strain in fermentation medium for 5 days fermentation.

  • PDF

Microstructure and plasma resistance of Y2O3 ceramics (Y2O3 세라믹스의 미세구조 및 플라즈마 저항성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.268-273
    • /
    • 2014
  • $Y_2O_3$ ceramic specimens were fabricated from the granular powder, obtained by spray drying process from the slurry. The slurry was prepared by mixing PVA binder, NaOH for Ph control, PEG and $Y_2O_3$ powder. The $Y_2O_3$ specimen was shaped in size of ${\phi}14mm$ and then sintered at $1650^{\circ}C$. The characteristics, microstructure, densities and plasma resistance of the $Y_2O_3$ specimens were investigated with the function of forming pressure and sintering time. $Y_2O_3$ specimens were exposed under the $CHF_3/O_2/Ar$ plasma, the dry etching treatment of specimens was carried out by the physical reaction etching of $Ar^+$ ion beam and the chemical reaction etching of $F^-$ ion decomposed from $CHF_3$. With increasing sintering time, $Y_2O_3$ specimens showed relatively high density and strong resistance in plasma etching test.

Preparation TiO$_2$sol using aqueous system and characteristics of its thin film (수용계를 이용한 TiO$_2$Sol의 제조와 박막의 특성)

  • 김성도;조경식;김성진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.271-277
    • /
    • 2000
  • Transparent $TiO_2$ thin films were prepared by the sol-gel method from titanium alkoxide aqueous solution containing large quantities of water. To prepare the aqueous system sol, the chelate compound solution were prepared from each 1 mole of titanium(IV)iso-propoxide, acetylacetone and 8 moles of isopropyl-alcohol. And then the 50 moles aqueous solution with the 0.02~0.50 moles of HCI for sol stability and the 0.3 mole of polyethylene glycol for coating adhesion were precisely dropped on the chelate compound solution. $TiO_2$thin films were fabricated by dip coating, drying and heat treatment at $400^{\circ}C$ and their characteristics were investigated by XRD, SEM and UV-visible spectrometer, The neutral sol of composition with TTIP : AcAc : IPA : $H_2O$ : PEG : HCl = 1 : 1 : 8 : 50 : 0.3 : 0.15 (molar ratio) was maintained stable sol condition and without problem for coating more than 30 days. The anatase phase $TiO_2$thin film prepared from 30 times dipping, drying and heat treating showed the flat surface and the fine microstructure of fracture surface with about 2 $\mu\textrm{m}$ thickness. Transparency of these $TiO_2$thin film was 80 % in the visible region.

  • PDF

L-Methionine Production by Protoplast Fusion of Brevibacterium flavum ATCC 14067 and Corynebacterium glutamicum ATCC 13032 (Brevibacterium flavum ATCC 14067과 Corynebacterium glutamicum ATCC 13032의 원형질체 융합에 의한 L-Methionine의 생산)

  • Bin, Jae-Hoon;Chung, Soo-Ja;Shin, Dong-Bun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.561-567
    • /
    • 1991
  • This study was designed to investigate the productivity of L-methionine by the method of protoplast fusion between Brevibacterium flavum ATCC 14067 and Corynebacterium glutamicm ATCC 13032, and then L-methionine production was performed to continuous fermentation using the immobilized fusant cells. Mutants B. flavum K 104($thr\;met\;Km^{r}\;Et^{r}\;Sm^{r}\;Tm^{r}\;as\;genetic\;marker$) and C. glutamicum B 70($thr\;Hos\;Km^{r}\;Et^{r}\;Sm^{r}\;Tm^{r}as\;genetic\;marker$) were isolated by MNNG treatment. On the other hand, protoplast of mutants were formed to treat with lysis solution containing $500{\mu}g/ml$ of lysozyme. The ratios of protoplast formation and regeneration were 99% and $64{\sim}66%$ respectively. Fusion frequency between B. flavum K 104 and C. glutamicum B 70 showed the $3.5{\times}10^{5}$ in the 35% polyethylene glycol(PEG6000) containing 3% PVP solution. The productivity of L-methionine by fusant BFCG 37 immobilized with sodium alginate was 0.89 g/l the batch fermentation and was $18.75mg/^{1}hr\;^{1}$ on the continuous fermentation at $30^{\circ}C$ for 72 hr.

  • PDF

Effect of kinds and concentrations of osmoticum on somatic embryo induction and germination from suspended embryogenic cell in Larix kaempferi (낙엽송(Larix kaempferi) 현탁배양된 배발생세포로부터 체세포배 유도 및 발아를 위한 삼투압제 종류 및 농도 효과)

  • Kim, Yong-Wook
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.141-146
    • /
    • 2013
  • This study was conducted to examine suspended embryogenic cells growth with days of culture, effects of various kinds/concentrations of osmoticum for induction of somatic embryos (SEs), following somatic embryos germination or plantlet regeneration. The proliferation pattern of embryogenic cells in suspension culture is characterized by settled cells volume (SCV) increased with the duration of culture with marked the maxium of SCV (10.1 ml) in 18 days of culture, however the SCV of cells gradually decreased after that. In comparison of kinds/concentrations of osmoticum on somatic embryo induction, the highest induction number (352.3/g FW) of the SE was showed in 0.2 M sucrose, in addition, we also observed some effects with treatments of 0.2 M maltose (203.7) and 0.3 M maltose (193.7), respectively. However, no somatic embryos produced in treatments of 7.5% PEG plus 0.15 M sucrose or maltose. In comparison of germination efficiency of SEs which occurred from the treatments of various kinds/ concentrations of osmoticum, the highest induction frequency of cotyledon (25.2%) was obtained from SEs that produced 0.3 M maltose, however, the best occurrence rates of hypocotyl (39%), radicle (30.3%) and plantlet regeneration (3.5%) were observed from the 0.2 M sucrose treatment, respectively.

Identification of Heat Stress-related Proteins and Low Molecular Weight HSP Expressed in Stem Tissues of Rice Plants by Proteomic Analysis (프로테옴 분석법에 의한 벼 줄기에서 발현하는 고온 스트레스 관련 단백질 및 저분자량 Heat Shock Protein의 분리 동정)

  • Lee, Dong-Gi;Kim, Kyung-Hee;Kim, Yong-Gu;Lee, Ki-Won;Lee, Sang-Hoon;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • In order to investigate rice stem proteome in response to heat stress, rice plants were subjected to heat treatment at 42$^{\circ}C$ and total soluble proteins were extracted from stem tissues, and were fractionated with 15% PEG (poly ethylene glycol) and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). After staining of 2-DE gels, 46 of differentially expressed proteins were extracted, digested by trypsin, and subjected to matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Proteins were identified through database search by using peptide mass fingerprints. Among them, 10 proteins were successfully identified. Seven proteins were up- and 3 proteins were down-regulated, respectively. These proteins are involved in energy and metabolism, redox homeostasis, and mitochondrial small heat shock proteins. The identification of some novel proteins in the heat stress response provides new insights that can lead to a better understanding of the molecular basis of heat-sensitivity in plants, and also useful to molecular breeding of thermotolerant forage crops.

Effect of Priming Treatments on Seed Germination and Seedling Growth of Sorbus alnifolia (Priming 처리가 팥배나무의 종자 발아 및 유묘 생장에 미치는 영향)

  • Seo, Byeong-Soo;Choi, Chung-Ho;Park, Woo-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • Seed priming is a useful technique for rapid and uniform seed germination as well as early seedling establishment. This experiment was conducted to find out the optimum condition for Sorbus alnifolia seed priming with four concentrations of four reagents in germination property and seedling growth performance. The results are summarized as follows: Percent germination (PG) varied 2.67% to 24.67%, and S. alnifolia seeds had the highest PG in the treatment that were primed in 100mM $KNO_3$ solution for 2 days. Mean germination time was the shortest in 200 mM $KNO_3$ solution for 2 days. Seed priming with $KNO_3$ solutions increased germination speed (GS) and germination performance index (GPI) compared with non-primed seeds. Especially seed primed with 100 mM $KNO_3$ solution for 2 days showed the highest GS and GPI. The highest relative growth rate (RGR) and seedling vigor index (SVI) was significantly (p<0.05) different from the control and other treatments, respectively. RGR of height (0.0071) and root collar diameter (0.0141) of seedling from primed seeds were the highest in 400 mM NaCl solution for 2 days. The highest SVI (5.43) was observed in the seedlings from seeds primed in 100 mM $KNO_3$ solution for 2 days. Consequently, the optimum reagent and concentration were $KNO_3$ and 100 mM for the effective germination and seedling growth in S. alnifolia

Studies on Factors Affecting Isolation and Fusion of Protoplasts of Quercus Species (참나무류(類)의 원형질체(原形質體) 분리(分離) 및 융합(融合)에 영향(影響)을 끼치는 요인(要因)에 관한 연구(硏究))

  • Hyun, Jung Oh;Kim, Jae Hun;Chang, Suk So
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.66-73
    • /
    • 1985
  • Factors affecting isolation and fusion of protoplasts of three Quercus species were investigated and procedures for isolation, purification and fusion of protoplasts of the three species were also established. Unhardened leaves and rapidly growing callus cultures were good source of viable protoplasts. The optimum composition of enzyme mixture for rapid isolation of protoplasts from leaf mesophyll tissues and calli was Cellulase Onozuka R-10 (20g/l, Macerozyme R-10(10g/l), Pectinase(250 units/l, $CaCl_2$, $2H_2O$(14mM), $MgSO_4{\cdot}7H_2O$(1.8mM), $KNO_3$(1.0mM), $H_3BO_3$(1.0mM), $KH_2PO_4$(0.2mM), KI($1.0{\mu}M$), 1,4-dithiothreitol (0.1mM) and mannitol (0.6M). Optimum density of protoplasts for maximum fusion was $2{\times}10^5/ml$ which was the highest protoplast density given in this study. Optimum concentration and duration of PEG 1450 treatment for inducing fusion appeared to be 29%(W/V) final PEG 1450 concentration and 5-10 minutes, respectively.

  • PDF

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.