• Title/Summary/Keyword: PECVD $SiO_x$

Search Result 64, Processing Time 0.021 seconds

Characteristic and moisture permeability of SiOxCy thin film synthesized by Atmospheric pressure-plasma enhanced chemical vapor deposition

  • Oh, Seung-Chun;Kim, Sang-Sik;Shin, Jung-Uk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.171-171
    • /
    • 2011
  • Atmospheric pressure- plasma enhanced chemical vapor deposition(AP-PECVD)Processes are recognized as promising and cost effective methods for wide-area coating on sheets of steel, glass, polymeric web, etc. In this study, $SiO_xC_y$ thin films were deposited by using AP-PECVD with a dielectric barrier discharge(DBD). The characteristic of $SiO_xC_y$ thin films were investigated as afunction of the HMDSO/O2/He flow rate. And the moisture permeability of $SiO_xC_y$ thin films was studied. The $SiO_xC_y$ thin films were characterized by the Fourier-transformed Infrared(FT-IR) spectroscopy and also investigated by X-ray photo electron spectroscopy(XPS), Auger Electron Spectroscopy(AES). The moisture permeability of $SiO_xC_y$ thin films was investigated by $H_2O$ permeability tester Detailed experimental results will be demonstrated through th present work.

  • PDF

Passivation properties of SiNx and SiO2 thin films for the application of crystalline Si solar cells (결정질 실리콘 태양전지 응용을 위한 SiNx 및 SiO2 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • We have investigated the passivation property of $SiN_x$ and $SiO_2$ thin films formed using various process conditions for the application of crystalline Si solar cells. An increase in the thickness of $SiN_x$ deposited using plasma enhanced chemical vapor deposition (PECVD) led to the improvement of passivation quality. This could be associated with the passivation of Si dangling bonds by hydrogen atoms which were supplied during PECVD deposition. The $SiO_2$ thin films grown using dry oxidation process exhibited better passivation behavior than those using wet oxidation process, implying the dry oxidation process was more effective in the formation of high quality $SiO_2$ thin films. The relative effective life time gradually decreased with increasing dry oxidation temperature. Such a degradation of passivation behavior could be attributed to the increase in interface trap density caused by thermal damages.

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.

High Performance p-type SnO thin-film Transistor with SiOx Gate Insulator Deposited by Low-Temperature PECVD Method

  • U, Myeonghun;Han, Young-Joon;Song, Sang-Hun;Cho, In-Tak;Lee, Jong-Ho;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.666-672
    • /
    • 2014
  • We have investigated the gate insulator effects on the electrical performance of p-type tin monoxide (SnO) thin-film transistors (TFTs). Various SnO TFTs are fabricated with different gate insulators of a thermal $SiO_2$, a plasma-enhanced chemical vapor deposition (PECVD) $SiO_x$, a $150^{\circ}C$-deposited PEVCD $SiO_x$, and a $300^{\circ}C$-deposited PECVD $SiO_x$. Among the devices, the one with the $150^{\circ}C$-deposited PEVCD $SiO_x$ exhibits the best electrical performance including a high field-effect mobility ($=4.86cm^2/Vs$), a small subthreshold swing (=0.7 V/decade), and a turn-on voltage around 0 (V). Based on the X-ray diffraction data and the localized-trap-states model, the reduced carrier concentration and the increased carrier mobility due to the small grain size of the SnO thin-film are considered as possible mechanisms, resulting in its high electrical performance.

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

Dielectric Characteristics through 2D-correlation Analysis of SiOCH Thin Film deposited by BTMSM/O2 High Flow Rates (BTMSM/O2 고유량으로 증착된 SiOCH 박막의 2차원 상관관계 분석을 통한 유전특성 연구)

  • Kim, Min-Seok;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.544-551
    • /
    • 2008
  • We have studied the dielectric characteristics of low-k interlayer dielectric materials fabricated by PECVD for various precursor's flow rates. BTMSM precursor was introduced with the flow rates from 42 sccm to 60 sccm by 2 sccm step in the constant flow rate of 60 sccm $O_2$. The absorption intensities of Si-O-$CH_x$ bonding group and Si-$CH_x$ bonding group changed synchronously for the variation of precursor flow rate, but the intensity of Si-O-Si(C) responded asynchronously with the $CH_x$ combined bonds. The heat treatment reduced the FTIR absorption intensity of Si-O-$CH_x$ bonding group and Si-$CH_x$ bonding group but increased the intensity of Si-O-Si(C). The nanopore and free space formed by the increasement of caged link mode and cross link mode of Si-O-Si(C) group implied the origin of low-k SiOCH films.

Electrical characteristics of low-k SiOCH thin film deposited by BTMSM/$O_2$ high flow rates (BTMSM/$O_2$ 고유량으로 증착된 low-k SiOCH 박막의 전기적인 특성)

  • Kim, Min-Seok;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • We studied the electrical characteristics of low-k SiOCR interlayer dielectric(ILD) films fabricated by plasma enhanced chemical vapor deposition (PECVD). The precursor bis-trimethylsilylmethane (BTMSM) was introduced into the reaction chamber with the various flow rates. The absorption intensities of Si-O-$CH_x$, bonding group and Si-$CH_x$, bonding group changed synchronously for the variation of precursor flow rate, but the intensity of Si-O-Si(C) responded asynchronously with the $CH_x$, combined bonds. The SiOCH films revealed ultra low dielectric constant around 2.1(1) and reduced further below 2.0 by heat treatments.

  • PDF

Characteristics of InSb MIS device prepared by remote PECVD SiO$_{2}$ (Remote PECVD SiO$_{2}$ 를 이용한 InSb MIS 소자의 특성)

  • 이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.59-64
    • /
    • 1996
  • InSb MIS devices prepared by remote PECVD SiO$_{2}$ were fabricated. The SiO$_{2}$ films on InSb were deposited at atemperature range of 67~190$^{\circ}$C. The effects of deposition temperature on the structural characteristics of the SiO$_{2}$ films evaluated Auger electron spectroscopy showed that atomic raito of silicon to oxygen was 0.5 and composition toms were distributed uniformaly throuout the oxide film. The transition region is about 100$\AA$ for SiO$_{2}$/InSb interface. The leakage current density at 1MV/cm and the breakdownelectric field of the MiS device using SiO$_{2}$ film deposited at 105$^{\circ}$C were about 22 nA/cm$^{2}$ and 3.5MV/cm, respectively. The interface-state density at mid-bandgap extracted from 1 MHz high frequency C-V measurement was about 2X10$^{11}$ cm$^{-2}$eV$^{-1}$.

  • PDF

Characterization of $SiO_xC_y$ films deposited by PECVD using BMDSO and Oxygen (HMDSO와 산소를 이용한 PECVD 증착 $SiO_xC_y$필름의 특성연구)

  • 김성룡;이호영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.182-188
    • /
    • 2001
  • Thin films of $SiO_xC_y$ deposited by means of PECVD(plasma enhanced chemical vapor deposition) using HMDSO(hexamethyldisiloxane)/$O_2$ were characterized. The effects of deposition conditions such as RF power, oxygen flow rate and hydrogen flow rate on the chemical bond structure, atomic composition, surface roughness and wear characteristics of the films were investigated by means of FTIR, XPS, AFM and Hazemeter. The deposition rate of $SiO_xC_y$ was greater than 100 nm/min, which is relatively high rate. The XPS results showed that the carbon content in a deposited film was lower than that of previous studies where different organosilicone materials were used. The optimum wear resistance was attained when RF power was 200 Watt and oxygen flow rate was 100 sccm. This study implies that the $HMDSO/O_2$ system is effective in forming a film with a lower carbon content and good abrasion resistance.

  • PDF

저온 선형 PECVD를 이용한 OLED용 Encapsulation 특성 연구

  • Yun, Seung-Jin;Kim, Seong-Jin;Choe, Jeong-Su;Jo, Byeong-Seong;Jeong, Seok-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.180-180
    • /
    • 2016
  • 최근 디스플레이 시장의 주요 키워드는 flexible organic light emitting diode (OLED) 이다. OLED 소자의 수명을 결정하는 가장 큰 요인 중의 하나는 공기 중의 O2와 H2O에 의한 유기물의 열화이다. 따라서 공기 중의 O2나 H2O가 유기물에 쉽게 침투하는 것을 막는 것은 소자의 수명 향상을 위하여 필수적이라 할 수 있다[1-3]. SiNx 박막은 경질로 투과성이 우수하며, 화학적 불활성인 특성으로 이러한 Barrier 역할로 연구되어 산업분야에 다양하게 응용되고 있다[4]. SiNx 박막은 일반적으로 plasma enhanced chemical vapor deposition (PECVD) 기술을 이용하여 증착되는데 기존의 PECVD 기술을 이용한 SiNx 박막은 낮은 water vapor transmission rate (WVTR) 등의 문제점들로 인해 한계점이 들어났다. 본 연구에서는, flexible display의 thin film encapsulation (TFE) 공정에서의 적용을 알아보기 위해 $370{\times}470$ size를 증착할 수 있는 In-line 장비를 이용하였으며, 기존의 PECVD 기술의 문제점으로 지적되고 있는 낮은 WVTR을 해결하기 위하여 저온 (<$100^{\circ}C$) 선형 PECVD 기술을 이용하여 WVTR을 개선하고자 하였다. 공정가스로는 SiH4와 NH3를 사용하였으며, SiH4 Carrier 가스로 He을 추가적으로 사용하였다. 또한 공정 압력은 100mTorr를 유지하였다. 증착된 SiNx 박막의 물리적, 화학적 특성 분석을 위해 분광엘립소메타, field emission electron microscopy (FESEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) 등을 이용하여 측정하였으며, 박막에 투습되는 수분의 양은 MOCON사의 AQUATRAN 2(W)로 측정하였다. OLED 소자를 구현하기 위해서는 기본적으로 봉지층에 투습되는 양을 $10-6g/m2{\cdot}day$ 이하로 막아줘야 한다고 알려져 있으나, 기존의 PECVD 기술을 이용하여 제작된 SiNx 박막의 WVTR은 $10-2{\sim}10-3g/m2{\cdot}day$ 레벨의 WVTR 결과를 보이고 있다. 본 연구에서 사용된 저온 선형 PECVD 기술을 이용하여 제작된 SiNx 박막의 WVTR은 $5.0{\times}10-5g/m2{\cdot}day$ 이하의 개선된 결과를 확인 할 수 있었다. 또한 flexible display에 적용하기 위해 SiNx 박막의 두께를 최소화한 100nm의 두께에서도 WVTR은 $5.0{\times}10-5g/m2{\cdot}day$ 이하의 결과가 유지됨을 알 수 있었다.

  • PDF