• 제목/요약/키워드: PEC

검색결과 296건 처리시간 0.028초

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe

  • Angani, C.S.;Park, D.G.;Kim, C.G.;Kollu, P.;Cheong, Y.M.
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.204-208
    • /
    • 2010
  • Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study, a pulsed eddy current (PEC) differential probe with two excitation coils and two Hall-sensors was fabricated to measure the wall thinning in insulated pipelines. A stainless steel test sample was prepared with a thickness that varied from 1 mm to 5 mm and was laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe were driven by a rectangular current pulse, the difference of signals from two Hall-sensors was measured as the resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The peak value increased as the thickness of the test sample increased. The results were measured at different insulation thicknesses on the sample. Results show that the differential PEC probe has the potential to detect wall thinning in an insulated NPP pipelines.

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

수직으로 정렬된 산화아연 나노막대 광전극의 광전기화학적 특성 (Photoelectrochemical Properties of a Vertically Aligned Zinc Oxide Nanorod Photoelectrode)

  • 박종현;김효진
    • 한국표면공학회지
    • /
    • 제51권4호
    • /
    • pp.237-242
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical (PEC) properties of a ZnO nanorod array structure as an efficient photoelectrode for hydrogen production from sunlight-driven water splitting. Vertically aligned ZnO nanorods were grown on an indium-tin-oxide-coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which was formed by thermally oxidizing a sputtered Zn metal thin film. The structural and morphological properties of the synthesized ZnO nanorods were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated ZnO nanorod photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the vertically aligned ZnO nanorod photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.65mA/cm^2$ at 0.8 V vs Ag/AgCl in a 1 mM $Na_2SO_4$ electrolyte. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs Ag/AgCl, which made the device self-powered.

MoS2 나노시트의 TiO2 나노선에 수직 성장을 통한 광전기화학반응 향상 (Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires)

  • 서동범;김의태
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.92-96
    • /
    • 2021
  • We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 ㎛ and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 ℃ using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 ℃ using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.

Cupric oxide thin film as an efficient photocathode for photoelectrochemical water reduction

  • Park, Jong-Hyun;Kim, Hyojin
    • 한국표면공학회지
    • /
    • 제55권2호
    • /
    • pp.63-69
    • /
    • 2022
  • Preparing various types of thin films of oxide semiconductors is a promising approach to fabricate efficient photoanodes and photocathodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility of an efficient photocathode for PEC water reduction of a p-type oxide semiconductor cupric oxide (CuO) thin film prepared via a facile method combined with sputtering Cu metallic film on fluorine-doped thin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Cu metallic film in dry air. Characterization of the structural, optical, and PEC properties of the CuO thin film prepared at various Cu sputtering powers reveals that we can obtain an optimum CuO thin film as an efficient PEC photocathode at a Cu sputtering power of 60 W. The photocurrent density and the optimal photocurrent conversion efficiency for the optimum CuO thin film photocathode are found to be -0.3 mA/cm2 and 0.09% at 0.35 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for sunlight-driven hydrogen generation using a facile method.

물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성 (Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting)

  • 박정환;김효진;김도진
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.214-220
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.

실록산 변성 에틸렌프로필렌 고무/고밀도 폴리에틸렌/카본블랙 복합체의 제조와 물성 (Preparation and Properties of Siloxane Modified EPDM/HDPE/Carbon black Composite)

  • 이병철;강두환
    • 폴리머
    • /
    • 제31권1호
    • /
    • pp.80-85
    • /
    • 2007
  • Maleic anhydride (MA)와 ethylene-propylene-diene terpolymer(EPDM)를 용액중합으로 말레화 EPDM(MEPDM)을 제조하고 이를 quaternary ammonium silyl Polydimethylsiloxane-TCNQ adduct(PST)와 internal mixer(Rheomix 600P)를 사용하여 용융중합으로 MEPDM-g-PST 공중합체를 제조하였다. 고밀도 폴리에틸렌(HDPE)과 MEPDM-g-PST 공중합체 및 카본블랙 (5, 10, 15 및 20 phr)을 배합하여 MEPDM-g-PST/HDPE/CB 복합체(MPEC)를 제조하였고 HDPE와 카본블랙(5, 10, 15 및 20 phr)을 배합하여 HDPE/CB 복합체(PEC)를 각각 제조하였다. MEPDM-g-PDMS 공중합체의 구조는 FTIR을 이용하여 확인하였으며 MA의 최대 그래프트율은 2.35%이였다. 제조한 복합체의 열적 특성을 측정한 결과 MPEC와 PEC는 유사한 열분해 온도를 나타내었다. MPEC의 인장강도는 카본블랙의 함량이 5에서 20 phr로 증가함에 따라 240에서 372 MPa로 증가하였으며 모폴로지를 분석한 결과 PEC보다 MPEC의 경우에서 카본블랙의 분산이 보다 더 잘 이루어졌음을 확인하였다.

경영시스템 도입 중소기업의 품질이행율 향상을 위한 품질기록 관리운영의 표준화 사례연구 (Introduction of Management System Case Study on Standardization of Quality Record Management to Improve Quality Performance Rate of SMEs)

  • 조철희;박병화;박진이
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.911-926
    • /
    • 2019
  • Purpose: In an infinite market competition, companies are adopting management systems to gain a competitive advantage. The expectancy effect of the management system is management performance improvement and accurate measurements. These can be made through quality records with integrity and maintainability. This paper examines the operation of records management standards, which are records, storage and management standards for quality records to understand the needs of records management standards and empathize with their needs. Methods: This paper examines PEC's (Pields Engineering Co., Ltd.) specific processes and standards for integrating individual management systems and establishing records management standards. We also look at the specific features of the Search Tool and Document Storage Management Standards that support records management standards. Results: The integration process of PEC's individual management system consists of five steps. A PDCA-based process was established to erode the confusion and inefficiencies caused by overlap between individual management systems. Also, by accurately grasping corporate competence, PEC established a record management standard suitable for the characteristics of the company. PEC's records management standards are used as a useful standard for organizing quality records, and have an impact on management performance improvement. Conclusion: PEC's records management standards enable the verification of quality performance rates and performance measures. Companies can implement appropriate quality improvement strategies based on the numbers identified by introducing records management standards. Companies can succeed in improving management performance when operating quality management that combines performance measurement techniques and records management standards.

13.56 MHz 무선 에너지 전송 시스템의 효율적인 전자파 장해(EMI) 예측 및 분석 방법 (A Method of Prediction and Analysis of Electromagnetic Interference (EMI) in Wireless Power Transfer System Operating at 13.56 MHz)

  • 심현진;박종민;남상욱
    • 한국전자파학회논문지
    • /
    • 제24권9호
    • /
    • pp.873-882
    • /
    • 2013
  • 13.56 MHz 무선 에너지 전송 시스템의 효율적인 전자파 장해(EMI) 측정 및 분석 방법을 제안한다. 두 루프 안테나가 자유 공간과 PEC면 위에 있는 두 가지 경우에 대하여 영상법과 쌍대성을 이용하여 자계 결합 시스템의 등가회로 모델링 분석을 통하여 각 루프에 흐르는 전류 및 발생하는 전자장을 수식적으로 표현한다. 여기서 완전 도체(Perfect Electric Conductor: PEC)는 완전 도체의 무한한 평면의 형태를 가지며, 이후에는 PEC면이라고 지칭한다. 원점에서 부터 관측 지점까지의 거리보다 충분히 가까운 지점에서의 최대 전자장의 크기를 이용하여 원점에서 충분히 떨어진 지점의 최대 전자장의 크기를 이론적으로 유추할 수 있다. 근거리에서의 자기장의 크기로 이론적으로 유추한 10 m 떨어진 위치에서의 최대 전자장의 크기와 상용 수치 해석 툴을 이용하여 구한 10 m 떨어진 위치의 최대 전자장의 크기를 비교, 분석하였다. 또한, 이론적으로 구한 최대 자기장의 크기를 바탕으로 방사성 장해 허용 기준을 만족하는 최대 허용 전력의 크기도 쉽게 구할 수 있다.

산화아연 나노막대가 내장된 아산화구리 박막 구조를 이용한 산화물 광양극 제작 및 광전기화학적 특성 (Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film)

  • 민병국;김효진
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.196-203
    • /
    • 2019
  • We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide ($Cu_2O$) thin film, namely a $ZnO/Cu_2O$ oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of $Cu_2O$ layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this $ZnO/Cu_2O$ p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs $Hg/Hg_2Cl_2$, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.