• Title/Summary/Keyword: PDMS-2

Search Result 366, Processing Time 0.025 seconds

Gas Permeation of CO2 and N2 through PDMS-HNT and PDMS-mHNT Composite Membranes (PDMS-HNT과 PDMS-mHNT 복합막을 통한 CO2와 N2의 기체투과)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • In this study, PDMS-HNT and PDMS-mHNT composite membranes were prepared by the addition of halloysite nanotube (HNT) and modified HNT (mHNT) to PDMS. To investigate the physico-chemical characteristics of composite membranes, analytical methods such as FT-IR, XRD, TGA, and SEM were utilized. The gas permeability and selectivity properties of $N_2$ and $CO_2$ were evaluated. In particular, the PDMS-HNT with 10 wt% HNT and PDMS-mHNT with 5 wt% mHNT showed the highest $CO_2/N_2$ selectivity and $CO_2$ permeability at $35^{\circ}C$, respectively. Overall, PDMS-HNT and PDMS-mHNT composite membranes improved the $CO_2/N_2$ selectivity compared to that of using PDMS membrane.

Preparation and Characterization of PTMSP/PDMS-zeolite Composite Membranes for Gas Separation (기체분리를 위한 PTMSP/PDMS-zeolite 복합막의 제조 및 특성)

  • Kim, Na-Eun;Kang, Tae-Beom;Hong, Se Lyung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.342-351
    • /
    • 2012
  • In this study, PTMSP[poly(1-trimethylsilyl-1-propyne)]/PDMS[poly(dimethylsioxane)]-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes were made to incorporate zeolite into PTMSP/PDMS graft copolymer in order to improve the selectivity and thermal stability, the drop of permeability by physical aging effect during long period of time for the PTMSP membrane. To investigate the physico-chemical characteristics of composite membranes, the analytical methods such as FT-IR, $^1H$-NMR, TGA, SEM, and GPC have been utilized. The gas permeability and selectivity properties of $H_2$ and $N_2$ were evaluated. The permeability of the PTMSP/PDMS-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes than PTMSP/PDMS graft copolymer membrane increased, increased as zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as zeolite content increased. PTMSP/PDMS-NaA zeolite composite membrane showed better permeability and separation factor than PTMSP/PDMS-NaY zeolite composite membrane.

Separation of Hydrogen-Nitrogen Gases by PDMS-NaA zeolite Mixed Matrix Membranes (PDMS-NaA zeolite 혼합기지분리막에 의한 수소-질소 분리)

  • Kang, Tae Beom;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.295-300
    • /
    • 2015
  • PDMS-NaA zeolite membranes were prepared by adding 0~40 wt% NaA zeolite. Based on SEM observation, NaA zeolite was dispersed in the PDMS-NaA zeolite membranes with $2{\sim}5{\mu}m$. The permeabilities of $H_2$ and $N_2$ gases through PDMS-NaA zeolite membranes increased as NaA zeolite contents increased and $H_2$ gas had better permeabilities than $N_2$. The selectivity ($H_2/N_2$) of PDMS-NaA zeolite membranes increased as NaA zeolite contents increased.

Separation of $H_2$ and $N_2$ by PDMS-NaYZeolite Composite Membranes (PDMS-NaYZeolite 막에 의한 수소-질소 분리에 관한 연구)

  • Ha, Jung-Im;Kang, Tae-Beom
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The PDMS-NaYzeolite composite membranes were prepared by adding 1~40 wt% NaYzeolite to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, and SEM. The permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of NaYzeolite contents. The permeability and selectivity ($H_2/N_2$) of PDMS membrane increased as the gas permeation pressure increased. The permeability of the PDMS-NaYzeolite composite membranes increased when 1~10 wt% NaYzeolite was added, and then decreased at higher wt% as NaYzeolite content increased. The selectivity ($H_2/_2$) of PDMS-NaYzeolite composite membranes decreased when 1~2 wt% NaYzeolite was added, and then increased as NaYzeolite content increased. As the $H_2$ permeability increased, the selectivity ($H_2/N_2$) of PDMS-NaYzeolite composite membranes decreased at 0~2 wt% and 10~40 wt% NaYzeolite contents, increased at 2~10 wt% NaYzeolite content.

Preparation and Permeation Characteristics of PDMS-b-PMMA Copolymer Membrane (PDMS-b-PMMA 공중합체 막의 제조 및 투과특성)

  • Kang, Tae-Beom;Cho, A-Ra;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • In this research, polydimethylsiloxane-polymethylmethacrylate (PDMS-PMMA) block copolymer was synthesized from polydimethylsiloxane (PDMS) and methylmethacrylate (MMA) monomer using atom transfer radical polymerization (ATRP). The synthesis characterization of the PDMS-b-PMMA copolymer membrane was carried out by a FT-IR, $^1H$-NMR, GPC and DSC. The permeabilities of nitrogen and hydrogen gases were observed being $1.2{\sim}l.5$ barrer and $6.2{\sim}10.5$ barrer, respectively. Simultaneously, selectivities of hydrogen against nitrogen were $5.3{\sim}6.9$. The permeability and selectivity of PDMS-b-PMMA copolymer membrane were showed lower than the PDMS membrane, but higher than the PMMA membrane.

Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes (PDMS-chitosan 복합막에 의한 수소와 질소 기체 분리에 관한 연구)

  • Ha, Jung Im;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.418-424
    • /
    • 2013
  • The PDMS-chitosan composite membranes were prepared by addition of 0.02~0.60 wt% chitosan to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as SEM and TGA. Gas permeation experiments was performed in $30^{\circ}C$, $4kg/cm^2$, the permeability and selectivity of $H_2$ and $N_2$ according to content change in composite membrane were investigated. The permeability of $H_2$ and $N_2$ for the PDMS-chitosan composite membranes increased when 0~0.20 wt% chitosan was added, and then decreased at higher wt% as chitosan content increased. The selectivity ($H_2/N_2$) of PDMS-chitosan composite membranes decreased when 0~0.20 wt% chitosan was added, and then increased as chitosan content increased. In the case of PDMS-chitosan in which chitosan was inserted to PDMS, thermal stability of PDMS was enhanced. Based on SEM observation, as the chitosan content within PDMS increased, the surface of the composite membranes became coarse and began to form holes.

Study of Validity and Interrater Reliability of Korean Version of the Peabody Developmental Motor Scale 2 (한글판 Peabody Developmental Motor Scale 2의 타당도와 검사자간 신뢰도 연구)

  • Lee, Ji-Ho;Kim, Kyeong-Mi;Chang, Moon-Young;Hong, Eunkyoung
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.17 no.3
    • /
    • pp.14-25
    • /
    • 2019
  • Objective : This study aims to verify the content validity and inter-rater reliability of the Korean version of the Peabody Developmental Motor Scale 2 (PDMS-2) and to identify the concurrent validity by comparing it with the Korean version of the Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Methods : PDMS-2 was translated by the researcher and an eighth-year clinical occupational therapist. The content consistency of the Korean version of the PDMS-2 was verified by three professors with experience using it. After the verification of the content consistency of the PDMS-2 by the five clinical occupational therapists and the additional revision, the Korean version of the PDMS-2 was completed. The researcher and another occupational therapist evaluated the Korean version of PDMS-2 in 50 children and measured the inter-rater reliability. Concurrent validity was measured by comparing the results of the Korean version of PDMS-2 and Korean version of BOT-2. Results : The content consistency test showed overall agreement of mean 3.45, and the content understanding test showed a high level of understanding of mean 3.69. The inter-rater reliability and concurrent validity of the Korean version of the PDMS-2 showed a statistically significant correlation. Conclusion : The Korean version of the PDMS-2 showed high content understanding, reliability, and validity. It can assist clinicians and researchers who work in fields related to child treatment or development.

PDMS Surface Modification for hydrophilicit Using 2-Hydroxyethyle Methacrylate without Monomethyl Ether Hydroquinone (친수성 유지를 위해 Monomethyl Ether Hydroquinone이 제거된 2-Hydroxyethyle methacrylate로 처리하는 PDMS 표면개질)

  • Kim, Sang-Cheol;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.36-38
    • /
    • 2003
  • In this paper, the surface modificatioin of PDMS (polydimethyl-siloxane) which is a useful material of microfluidic devices is presented. PDMS-based devices can be fabricated by casting the polymer in a mold, but the porosity and the hydrophobicity of PDMS make difficult to use as bio-medical devices. To overcome these disadvantages, the PDMS surface is grafted with HEMA (2-Hydroxyethyle methacrylate) treatments and $O_2$ plasma process. The $O_2$ plasma process is performed for 20 sec after curing PDMS, and PDMS is put in the prepared HEMA without Monomethyle Ether Hydroquinone. Residual monomers and homopolymers of HEMA-treated PDMS surface are removed using soxhlet extractor. The PDMS surface modification using HEHA without Monomethyle Ether Hydroquinone is experimented, and compare to when additing $FeCl_2{\cdot}2H_2O$. A method with a soxhlet extractor compare to the existing rinse method. The hydrophilicity is confirmed by the measurement of a contact angle, and we observe whether the hydrophilicity is retained.

  • PDF

Preparation and Permeation Characteristics of PTMSP-PDMS-Silica/PEI Composite Membranes (PTMSP-PDMS-Silica/PEI 복합막의 제조 및 투과특성)

  • Lee, Hyun-Kyung;Hong, Se-Lyung
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.146-156
    • /
    • 2008
  • In this study, PTMSP of high permeability and high molecular weight was synthesized, and PTMSP-PDMS graft copolymer was synthesized from poly [1-(trimethylsily)propyne] (PTMSP) and hydroxy-terminated poly(dimethylsiloxane) (PDMS). The PTMSP-PDMS-silica composites were prepared by the addition of 15, 30, or 50 wt% tetraethoxysilane (TEOS) to PTMSP-PDMS graft copolymer by sol-gel process. To investigate the physico-chemical characteristics of PTMSP-PDMS-silica/PEI composite membranes, the analytical methods such as $^1H$-NMR, FT-IR, TGA, XPS, GPC, and SEM have been utilized. The gas permeability and selectivity properties of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;n-C_4H_{10}$, were evaluated. Permeability of the composite membranes increased as TEOS content and pressure increased. Selectivity of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;and\;n-C_4H_{10}$, showed the maximum value at 30 wt% of TEOS content and decreased thereafter.

Utilization improvement of PDMS and fluoropolymers by mutual application

  • Sihn, Youngho;Lee, Woojin
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.39-49
    • /
    • 2011
  • We investigated about the utilization improvement of the PDMS and fluoropolymers by mutual application in environmental analysis. We were conducted the direct fluorination with mild condition on the PDMS films and analyzed its surfaces before and after fluorination. The results of FTIR and SEM analysis on the PDMS films showed that the film surfaces were fluorinated without irreversible deformation by the fluorination. During the fluorination, the measured contact angles of water and several alcohols on the PDMS films decreased with time and that of most alcohols decreased to 0 after 30 minutes. The surface energy of fluorinated PDMS films has increased by 2 times. Also, we investigated the influence factors on the change of permeation rate of water through PDMS tubes with time. It was observed that the change of permeation rate of water through PDMS tube was affected by temperature, water phase and spatial distribution of water. From these results, we could verify the principal causes of the decrease of permeation rate of water through PDMS tube with time and proposed a new experimental setup for reducing the variation of permeation rate of water less than 2%.