Preparation and Permeation Characteristics of PDMS-b-PMMA Copolymer Membrane

PDMS-b-PMMA 공중합체 막의 제조 및 투과특성

  • Kang, Tae-Beom (Department of Chemistry, Sang Myung University) ;
  • Cho, A-Ra (Department of Chemistry, Sang Myung University) ;
  • Lee, Hyun-Kyung (Department of Industrical Chemistry, Sang Myung University)
  • Published : 2008.09.30

Abstract

In this research, polydimethylsiloxane-polymethylmethacrylate (PDMS-PMMA) block copolymer was synthesized from polydimethylsiloxane (PDMS) and methylmethacrylate (MMA) monomer using atom transfer radical polymerization (ATRP). The synthesis characterization of the PDMS-b-PMMA copolymer membrane was carried out by a FT-IR, $^1H$-NMR, GPC and DSC. The permeabilities of nitrogen and hydrogen gases were observed being $1.2{\sim}l.5$ barrer and $6.2{\sim}10.5$ barrer, respectively. Simultaneously, selectivities of hydrogen against nitrogen were $5.3{\sim}6.9$. The permeability and selectivity of PDMS-b-PMMA copolymer membrane were showed lower than the PDMS membrane, but higher than the PMMA membrane.

본 연구에서는 atom transfer radical polymerization (ATRP)에 의해 polydimethylsiloxane (PDMS)와 methyl-methacrylate (MMA)로부터 polydimethylsiloxane-polymethylmethacrylate (PDMS-PMMA) block copolymer를 합성하였다. 합성된 PDMS-b-PMMA copolymer막의 특성은 FT-IR, $^1H$ NMR, GPC, DSC 등을 사용하여 조사하였다. 질소와 수소의 투과도는 각각 $1.2{\sim}l.5$ barrer와 $6.2{\sim}10.5$ barrer를 보였고, 질소에 대한 수소의 선택도는 $5.3{\sim}6.9$ 범위였다. PDMS-b-PMMA copolymer 막의 투과도와 선택도는 PDMS 막보다는 낮은 값을 보였고, PMMA 막보다는 높은 결과를 보였다.

Keywords

References

  1. J. W. Park, D. H. Shin, and Y. T. Lee, 'Concentration of citrus esence aroma model solution by pervaporation', Membrane Journal, 16, 68 (2006)
  2. Y. G. Jung, H. S. Park, H. S. Byun, and Y. T. Hong, 'A study on the preparation and characterization of sulfonated PS/PVdF composite membranes', Membrane Journal, 16, 286 (2006)
  3. B. R. Park, J. W. Rhim, S. Y. Lee, T. S. Hwang, and H. K. Lee, 'Membrane surface modification through direct fluorination for gas-liquid contactor', Membrane Journal, 17, 345 (2006)
  4. D. P. Queiroz and M. N. de Pinho, 'Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/ urea bi-soft segment membranes', Polymer, 46, 2346. (2005) https://doi.org/10.1016/j.polymer.2004.12.056
  5. B. D. Ratner, 'Surface characterization of biomaterials by electron spectroscopy for chmical analysis', Annals of Biomedical Engineering, 11, 313 (1983) https://doi.org/10.1007/BF02363290
  6. W. J. Ward III, W. R. Browall, and R. M. Salemme, 'Ultrathin Silicone/Polycarbonate Membranes for Gas Separation Processes' J. Membr. Sci., 1, 99 (1976) https://doi.org/10.1016/S0376-7388(00)82259-0
  7. P. C. Lebaron and T. J. Pinnavaia, 'Clay nanolayer reinforcement of a silicone elastomer', Chem. Mater., 13, 3760 (2001) https://doi.org/10.1021/cm010982m
  8. G. Clarizia, C. Algieri, and E. Drioli, 'Filler-polymer combination:aroute to modify gas transport properties of a polymeric membrane', Polymer, 45, 5671 (2004) https://doi.org/10.1016/j.polymer.2004.06.001
  9. C. Dotremont, B. Brabants, K. Geeroms, J. Mewis, and C. Vandecasteele, 'Sorption and diffusion of chlorinated hydrocarbons in silicalite-filled PDMS membranes' J. Membr. Sci., 104, 109 (1995) https://doi.org/10.1016/0376-7388(95)00019-9
  10. M. Jia, K. V. Peinemann, and R. D. Behling, 'Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation', J. Membr. Sci., 57, 289 (1991) https://doi.org/10.1016/S0376-7388(00)80684-5
  11. K. E. Min and D. R. Paul, 'Effect of tacticity on permeation properties of poly(methyl metacrylate)', J. Polym. Sci. part B: polymer physics, 26, 1021 (1988) https://doi.org/10.1002/polb.1988.090260507
  12. B. Bikson, J. K. Nelson, and N. Muruganandam, 'Composit cellulose acetate/poly(methyl metacrylate) blend gas separation membrane', J. Membr. Sci., 94, 313 (1994) https://doi.org/10.1016/0376-7388(94)87041-1
  13. E. J. Moon, J. E. Yoo, H. W. Choi, and C. K. Kim, 'Gas transport and thermodynamic properties of PMMA/PVME blends containing PS-b-PMMA as compatibilizer', J. Membr. Sci., 204, 283 (2002) https://doi.org/10.1016/S0376-7388(02)00051-0
  14. Ywu-Jang Fu, Chien-Chieh Hu, Kueir-Rarn Lee, Hui-an Tsai, Ruoh-Chyu Ruaan, and Juin-Yih Lai, 'The correlation between free volume an gas separation properties in high molecular weight poly (methyl methacrylate) membranes', Eur. Polym. J., 43, 959 (2007) https://doi.org/10.1016/j.eurpolymj.2006.12.024
  15. T. Uragami, H. Yamada, and T. M., 'Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology' J. Memb. Sci., 187, 255 (2001) https://doi.org/10.1016/S0376-7388(01)00355-6
  16. H.-C. Chiu, J.-J. Huang, C.-H. Liu, and S.-Y. Suen, 'Batch adsorption performance of methyl methacrylate/styrene copolymer membranes', Reactive & Functional Polymers, 66, 1515 (2006) https://doi.org/10.1016/j.reactfunctpolym.2006.04.011
  17. D. A. Brown and G. J. Price. 'Preparation and thermal properties of block copolymers of PDMS with styrene or methyl methacrylate using ATRP', Polymer, 42, 4767 (2001) https://doi.org/10.1016/S0032-3861(00)00845-4
  18. J. M. watson and P. A. Payne, 'A study of organic compound pervaporation through silicone rubber', J. Membrane Sci., 49, 171 (1990) https://doi.org/10.1016/S0376-7388(00)80786-3