• 제목/요약/키워드: PDMS stamp

검색결과 46건 처리시간 0.023초

롤 기반 나노임프린트 리소그래피 시스템 기술 (Technology for Roll-based Nanoimprint Lithography Systems)

  • 임형준;이재종;최기봉;김기홍;이성휘
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.1-8
    • /
    • 2013
  • Roll-based, nanoimprint lithography (Roll-NIL) is one effective method to produce large-area nanopatterns continuously. Systems and processes for Roll-NIL have been developed and studied for more than 15 years. Since the shapes of the stamp and the substrate for Roll-NIL can be plates, films, and rolls, there exist many concepts to design and implement roll-NIL systems. Combinations and variations of contact-methods for variously shaped stamps and substrates are analyzed in this paper. The contact-area can be changed by using soft materials such as polydimethylsiloxane (PDMS) or silicone rubber. Ultraviolet (UV) sources appropriate for the roll-to-plate or roll-to-roll process are introduced. Finally, two roll-to-plate nanoimprint lithography systems are illustrated.

Fabrication of ZnO TFTs by micro-contact printing of silver ink electrodes

  • Shin, Hong-Sik;Yun, Ho-Jin;Nam, Dong-Ho;Choi, Kwang-Il;Baek, Kyu-Ha;Park, Kun-Sik;Do, Lee-Mi;Lee, Hi-Deok;Wang, Jin-Suk;Lee, Ga-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1600-1603
    • /
    • 2009
  • In this work, we have fabricated inverted staggered ZnO TFTs with 1-${\mu}m$ resolution channel length by micro contact printing (${\mu}$-CP) method. Patterning of micro scale source/drain electrodes without etching is successfully achieved by micro contact printing method by using silver ink and polydimethylsiloxane (PDMS) stamp. And the time dependent characteristics of the sheet resistance show that Ag inklayer could be used as source and drain electrodes for ZnO TFTs.

  • PDF

소프트 스탬핑 프린팅 장비 개발에 관한 연구 (A Study on the Development of Soft Stamping Printing Equipment)

  • 장남은;김남국;이윤섭;김용태;신관우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.259-262
    • /
    • 2009
  • Several universities in Korea are beginning studies related to soft stamping processes but since the studies are done with manual works thus systematic tests can't be performed due to difficulties in producing reproducible and repeatable fine patterns. Therefore, the phenomenon of destruction of the pattern forms of elastic polymers occurred during working because of inconsistent printing pressures and pinting time and there have been difficulties in maintaining flatness or producing uniform and fault-free fine structures in pinting large areas and also, there have been difficulties in multi-layered processes as patterns were changed by contacts in registering and errors in alignments. The purpose of development of this technology is to improve the process of soft lithography so that contacts between PDMS stamps and metal coated substrates in order to develop a stamp printing device that can not only shorten but also optimize processes, secure reproducibility and repeatability and is advantageous in printing large areas. Also, using this technology, this author is to develop equipment technologies and applied technologies for nano grade pattern printing processes with new concepts based on fine contact printing processes in order to apply them to diverse nano pattering processes.

  • PDF

표면 평탄도가 소프트리소법에 의한 미세 패턴 형성에 미치는 영향 (Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography)

  • 김경호;최균;한윤수
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.871-876
    • /
    • 2014
  • Efficiency of crystalline Si solar cell can be maximized as minimizing optical loss through antireflection texturing with inverted pyramids. Even if cost-competitive, soft lithography can be employed instead of photolithography for the purpose, some limitations still remain to apply the soft lithography directly to as-received solar grade wafer with a bunch of micro trenches on surface. Therefore, it is needed to develop a low-cost, effective planarization process and evaluate its output to be applicable to patterning process with PDMS stamp. In this study new surface planarization process is proposed and the change of micro scale trenches on the surface as a function of etching time is observed. Also, the effect of trenches on pattern quality by soft lithography is investigated using FEM structural analysis. In conclusion it is clear that the geometry and shape of trenches would be basic considerations for soft lithography application to low quality wafer.

마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링 (Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing)

  • 홍지화;한윤수
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

Ag 잉크의 미세접촉인쇄에 있어서 동역학적 파라미터가 인쇄특성에 미치는 영향 분석 (Analysis of Kinetic Parameter Effects on Printing Property in Micro-Contact Printing of Ag Ink)

  • 박성률;송정근
    • 대한전자공학회논문지SD
    • /
    • 제47권2호
    • /
    • pp.7-14
    • /
    • 2010
  • 본 논문에서는 금속 전극을 미세접촉인쇄방식으로 Ag ink를 이용하여 제작하는데 있어서 접착속도, 분리속도, 접촉시간의 세 가지의 동역학적 파라미터가 잉크 전이율에 미치는 영향을 분석하여 최적의 공정조건을 도출하였다. 잉킹공정에서는 접촉속도는 1 mm/s 이하, 접촉 후 유지시간은 짧게 하며, 분리속도는 1000 mm/s로 빠르게 해야 잉크의 전이율이 98%이상 높았다. 프린팅 공정에서는 반대로 접촉속도는 100mm/s 이상의 빠르게, 접촉 후 유지시간은 30초 이상, 분리속도는 1mm/s 이하로 느리게 할 때 최고의 인쇄특성을 보였다. 이를 이용해 전체 $5cm{\times}5cm$ 면적에 최소 선폭 $30{\mu}m$, 두께는 300~500nm, 50nm이하의 약 $15{\sim}16{\mu\Omega\cdot}cm$ 비저항을 가지는 전극을 인쇄하였다.