• Title/Summary/Keyword: PDMS mold

Search Result 85, Processing Time 0.039 seconds

Fabrication of Micropattern by Microcontact Printing (미세접촉인쇄기법을 이용한 미세패턴 제작)

  • 조정대;이응숙;최대근;양승만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1224-1226
    • /
    • 2003
  • In this work, we developed a high resolution printing technique based on transferring a pattern from a PDMS stamp to a Pd and Au substrate by microcontact printing Also, we fabricated various 2D metallic and polymeric nano patterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing (${\mu}$CP) based on soft lithography. Silicon masters for the micro molding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. From this work, it is certificated that composite PDMS mold and undercutting technique play an important role in the generation of a clear SAM nanopattern on Pd and Au substrate.

  • PDF

Fabrication method of PDMS microlensesusing water-based molding method (표면개질에 의한 물방울 접촉각 변화를 이용하여 제작된 PDMS 마이크로 렌즈)

  • Kim, Hong-Ki;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.375-379
    • /
    • 2008
  • This paper reports a new fabrication method of polydimethylsiloxane (PDMS) microlenses with various curvatures by using a water-based mold. The hydrophobic surface of Polypropylene (PP) substrate was modified by corona discharge using tesla coil to have hydrophilic surface. Then hydrophilic surface of PP substrate takes hydrophobic recovery to have various contact angles from less than $25^{\circ}$ to about $84^{\circ}$. By using the water droplets with various contact angles as replica molds for PDMS process, we could obtain PDMS microlenses with various curvatures.

PDMS Surface Modification for hydrophilicit Using 2-Hydroxyethyle Methacrylate without Monomethyl Ether Hydroquinone (친수성 유지를 위해 Monomethyl Ether Hydroquinone이 제거된 2-Hydroxyethyle methacrylate로 처리하는 PDMS 표면개질)

  • Kim, Sang-Cheol;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.36-38
    • /
    • 2003
  • In this paper, the surface modificatioin of PDMS (polydimethyl-siloxane) which is a useful material of microfluidic devices is presented. PDMS-based devices can be fabricated by casting the polymer in a mold, but the porosity and the hydrophobicity of PDMS make difficult to use as bio-medical devices. To overcome these disadvantages, the PDMS surface is grafted with HEMA (2-Hydroxyethyle methacrylate) treatments and $O_2$ plasma process. The $O_2$ plasma process is performed for 20 sec after curing PDMS, and PDMS is put in the prepared HEMA without Monomethyle Ether Hydroquinone. Residual monomers and homopolymers of HEMA-treated PDMS surface are removed using soxhlet extractor. The PDMS surface modification using HEHA without Monomethyle Ether Hydroquinone is experimented, and compare to when additing $FeCl_2{\cdot}2H_2O$. A method with a soxhlet extractor compare to the existing rinse method. The hydrophilicity is confirmed by the measurement of a contact angle, and we observe whether the hydrophilicity is retained.

  • PDF

Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate (나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작)

  • Park, Yong Min;Seo, Sang Hyun;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

A Study on Surface Fabrication of Super Hydrophobic using Pico Second Laser (피코초 레이저를 이용한 초소수성 표면 제작에 관한 연구)

  • Cho, Il-Hwan;Lee, Jae-Hoon;Noh, Ji-Whan;Lee, Seoung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.161-169
    • /
    • 2012
  • Recently, a study for the functional surface production of super hydrophobic of natural and biomimetic artificial has attracted much attention. To make process methods of super hydrophobic surface has a variety of ways such as lithography, etching, and laser ablation. However, we were used ultra-shot pulse laser ablation process which has the virtue of more environmental friendliness and simple process. In this paper, we were fabricated a multiplicity of super hydrophobic patterns on mold surface(NAK80) using by optimizing the laser processing conditions and it was transferred on PDMS. Also, we measured contact angle super hydrophobic patterns on PDMS. The result showed there is no patterns on PDMS were measured 94 degrees, by contrast, optimized super hydrophobic patterns on PDMS was 157 degrees. Therefore we fabricated super hydrophobic surface on mold. Based on these experimental results, it is possible to mass production using ultra shot pulse laser ablation of super hydrophobic pattern and to be applied for a variety of industries.

Micromolding process using PDMS for refractive microlens (Micromolding process에 의한 refractive microlens의 제작)

  • Ahn, Si-Hong;Lee, Sang-Ho;Kim, Min-Soo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.578-580
    • /
    • 2000
  • Micromolding process에 의한 refractive microlens array를 제작한다. PDMS, UV curable acryl adhesive 등 여러 가지 polymer 재료를 시도한다. 기존의 공장에서 주로 사용되던 etched bulk silicon, electroplated metal 등의 구조물이 아닌, polymer 구조물을 mold로 사용한다. Micromolding process에 의해 제작되는 microlens의 특성은 mold의 험상에 의해 결정된다. Reflow 공정에 의해 제작된 photoresist microlens는 매우 우수한 표면 특성과 형상 대칭성을 보여주므로, microlens의 mold로서 사용하기에 적합하다.

  • PDF

printing 방식을 이용한 은 나노 잉크 직접 패터닝 기술

  • O, Sang-Cheol;Yang, Gi-Yeon;Han, Gang-Su;Lee, Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.63-63
    • /
    • 2010
  • 나노 구조를 제작은 나노 기술을 기반으로 하는 electronics, optoelectronics, sensing, ultra display등의 여러 분야에서 이용되고 있다. 특히 나노 구조를 갖는 금속 패터닝의 경우 전자빔 리소 그래피 (electron beam lithography)나 레이저 패터닝(laser patterning)과 같은 방법들이 많이 사용되고 있다. 하지만 공정이 복잡하고 그로 인해 공정 비용이 많이 든다는 단점이 있었다. 나노 임프린트 리소그래피 기술은 master mold 표면의 나노 패턴을 가열, 가압 공정을 통해 기판 위의 고분자 레지스트 층으로 전사하는 기술이다. 이 기술은 간단한 공정을 통해 나노 패턴을 형성할 수 있는 기술이기 때용에 차세대 나노 패터닝 기술로써 각광받고 있다. 특히 이 기술은 레지스트 층과의 직접적인 접촉을 통해 나노 패턴을 형성하기 때문에 다양한 방법을 통해 기능성 나노 패턴을 직접적으로 형성할 수 있는 가능성을 지니고 있다. 본 연구는 novel meta1의 하나인 Ag 입자가 첨가된 ink solution를 master mold로부터 복제한 PDMS mold를 이용하여 다양한 구조의 나노 패턴을 만드는 방법에 대한 연구이다.

  • PDF

Self Assembled Patterns of Ag Using Hydrophobic and Hydrophilic Surface Characteristics of Glass (유리기판의 친수.소수 상태 변화를 이용한 자기정렬 Ag Pattern 형성 연구)

  • Choo Byoung-Kwon;Choi Jung-Su;Kim Gun-Jeong;Lee Sun-Hee;Park Kyu-Cang;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.354-359
    • /
    • 2006
  • Recently, the interest in lithography without photo exposure has been increased compare to the conventional photolithography in nano meter and micrometer size patterning area. We studied a self aligned dipping of Ag solution through micro contact printing (${\mu}-CP$) with octadecyltrichlorosilane (OTS) treated polydimethylsiloxane (PDMS) soft mold. The OTS monolayer on the patterned PDMS was formed by dipping it into OTS solution. We transferred the OTS monolayer from PDMS mold to the glass. The OTS monolayer changed the surface energy from hydrophilic surface to hydrophobic surface, And then we made self aligned Ag solution patterns just after dipping the substrate, using adhesion difference of Ag solution between OTS treated hydrophobic area and non-OTS treated hydrophilic area. We finally get the Ag patterns through only dip-coating after the ${\mu}-CP$ process. And we observed surface energies on the glass substrate through the contact angle measurements as time goes on.

PLC Devices Fabricated on Flexible Plastic Substrate by Roll-to-Roll Imprint Lithography (유연 기판을 이용한 PLC소자 제작을 위한 롤투롤 공정 연구)

  • Kang, Ho Ju;Kim, Taehoon;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.25-29
    • /
    • 2015
  • Demand for a low-cost, high-throughput, and high-resolution patterning method for fabricating devices continues to increase. The roll-to-roll (R2R) imprint lithography technique has received a great deal of attention as a means of fabricating next-generation devices. In this paper, we propose a fabrication method for polymeric planar lightwave circuit (PLC) devices that uses R2R imprint lithography. The proposed technique uses an elastomeric polydimethylsiloxane (PDMS) mold. A Si wafer with micro patterns is used as the Si master. The PDMS mold is then replicated from the Si master. By applying a precise web tension and at a given web speed, we fabricated a micro-patterned PLC device. The insertion losses were 4.0 dB for a $1{\times}2$ optical splitter. As such, the proposed method of fabricating a PLC device by the R2R process was shown to be an effective solution.