• Title/Summary/Keyword: PD-L2

Search Result 280, Processing Time 0.022 seconds

1,2-Propanediol Production by Using Saccharomyces cerevisiae M3G3 (Saccharomyces cerevisiae M3G3를 이용한 1,2-Propanediol의 생산 최적화)

  • Koo, Ja-Ryong;DaSilva, Nancy A.;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.439-442
    • /
    • 2011
  • 1,2-propanediol (1,2-PD) is a commodity chemical that is currently produced from petrochemical derivatives. Saccharomyces cerevisiae is well characterized and a successful industrial microorganism to enable the improvement of the 1,2-propanediol production by metabolic engineering. A recombinant S. cerevisiae M3G3 was used to produce 1,2-propanediol. S. cerevisiae M3G3 is the diploid strain that contains 3 copies of mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase). S. cerevisiae M3G3 was cultivated at various culture conditions by changing culture temperature, glucose concentration, and inducer concentration. Also the effect of induction time was studied to optimize the production of 1,2-propanediol. Batch and fed-batch cultivation of S. cerevisiae M3G3 was performed by using a 5 L jar fermenter. The highest concentration of 1,2-propanediol in batch cultivation was 0.86 g/L and it was further improved to 1.33 g/L in fed-batch cultivation.

Effects of Cadmium on Glucose Transport in 3T3- L1 adipocytes (3T3-L1 지방세포주에서 포도당 수송에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang- Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2005
  • Cadmium is well known as a toxic metal and has insulin mimicking effects in rat adipose tissue. This study was undertaken to investigate the effect of CdCl₂ on glucose transport and its mechanism in 3T3 - L1 adipocytes. CdCl₂ exhibits respectively 2.2 and 2.8 fold increases in the 2-deoxyglucose uptake when exposed to 10 and 25 μM of CdCl₂ for 12 hr. To investigate the stimulating mechanism of glucose transport induced by CdCl₂. Wortmannin and PD98059 were used respectively as PI3K inhibitor and MAPK inhibitor, which did not affect 2-DOG uptake. This results suggest that induced 2-deoxy-(l-3H)-D-glucose (2-DOG) uptake by CdCl₂ may not be concerned with the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker inhibited the 2- DOG uptake stimulated by CdCl₂. In addition, we also measured the increased production of Reactive oxygen substances (ROS) and glutathione (GSH) level in 3T3-L1 adipocytes to investigate correlation between the glucose uptake and increased production of ROS with H2DCFDA. CdCl₂ increased production of ROS. Induced 2-DOG uptake and increased production of ROS by CdCl₂ were decreased by N-acetylcystein (NAC). And L-buthionine sulfoximine (BSO) a potent inhibitor of γ-GCS, decreased of 2-DOG uptake. Also NAC and BSO changed the cellular GSH level, but GSH/GSSG ratio remained unchanged at 10, 25 μM of CdCl₂.

Evaluation of Nivolumab Use and Factors related to Treatment Outcomes in a Cancer Center of a Top Tier General Hospital (상급종합병원 암센터에서 Nivolumab 사용평가와 치료성과에 미치는 영향인자)

  • Eoum, Gohye;Cho, Yoonsook;Rhie, Sandy Jeong
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.2
    • /
    • pp.88-94
    • /
    • 2018
  • Background: We strived to evaluate the status of nivolumab use and associated factors on the clinical efficacy of the drug. Methods: The study was retrospectively conducted in patients who had been administered nivolumab at least once at the cancer center of Seoul National University Hospital from June 2015 to April 2017. Data were collected from electronic medical records. A medication-use evaluation was performed based on the American Society of Health-System Pharmacists mediation-use guidelines. Results: Sixty-six of the 74 patients (89.2%) showed indications approved for nivolumab use by the Korean Ministry of Food and Drug Safety (MFDS; n=55) or the US Food and Drug Administration (FDA; n=11). Approximately 73.0% of the patients were administered the approved dose of 3 mg/kg but 25.7% were administered an unapproved fixed dose of 100 mg. The overall response rate was 21.7%, and the response rate of non-small cell lung cancer patients, who accounted for the largest number of indications, was 18.8%. Adverse reactions were found in 90.1% of the patients and were mostly mild (86%). The expression of programmed death-ligand 1 (PD-L1) was analyzed as a factor affecting treatment response (p=0.028, odds ratio [OR]=11.331). Conclusion: PD-L1 expression was found to affect treatment response. However, caution is required while using an unapproved dosage and in the absence of monitoring for effectiveness and safety. Therefore, an effective protocol or instruction manual for the proper use of nivolumab should be considered.

Optimization and Scale-up of Fish Skin Peptide Loaded Liposome Preparation and Its Storage Stability (어피 펩타이드 리포좀 대량생산 최적 조건 및 저장 안정성)

  • Lee, JungGyu;Lee, YunJung;Bai, JingJing;Kim, Soojin;Cho, Youngjae;Choi, Mi-Jung
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2017
  • Fish skin peptide-loaded liposomes were prepared in 100 mL and 1 L solution as lab scales, and 10 L solution as a prototype scale. The particle size and zeta potential were measured to determine the optimal conditions for the production of fish skin peptide-loaded liposome. The liposome was manufactured by the following conditions: (1) primary homogenization at 4,000 rpm, 8,000 rpm, and 12,000 rpm for 3 minutes; (2) secondary homogenization at 40 watt (W), 60 W, and 80 W for 3 minutes. From this experimental design, the optimal conditions of homogenization were selected as 4,000 rpm and 60 W. For the next step, fish peptides were prepared as the concentrations of 3, 6, and 12% at the optimum manufacturing conditions of liposome and stored at $4^{\circ}C$. Particle size, polydispersion index (pdI), and zeta potential of peptide-loaded liposome were measured for its stability. Particle size increased significantly as manufacture scale and peptide concentration increased, and decreased over storage time. The zeta potential results increased as storage time increased at 10 L scale. In addition, 12% peptide showed the formation of a sediment layer after 3 weeks, and 6% peptide was considered to be the most suitable for industrial application.

The Effects of Light and $CO_2$ on the Changes of Electrical Potential Difference in Isolated Epidermis and Intact Leaves of Commeina communis L

  • Lee Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.221-227
    • /
    • 2005
  • The effects of light and $CO_2$ on the electrophysiological characteristics of guard cells in the intact leaf and isolated epidermis have been investigated. Fast hyperpolarization of guard cell apoplastic PD in the intact leaf was recorded reaching up to around 7 mV and 20 mV in response to light and $CO_2$. Whenever the experiments were attempted with isolated epidermis, there was no response to light and $CO_2$. In order to determine the influence of the mesophyll cells, the apoplastic PD of guard cells in isolated epidermis was measured in the presence of the mesophyll supernatant or the control medium. The apoplastic PD in isolated epidermis was hyperpolarized to -7mV, changing from -22mV to -29mV at 40 min. But, when isolated epidermis was incubated with the supernatant from mesophyll cells incubated in the light, the apoplastic PD in isolated epidermis was hyperpolarized to -19 mV, changing from -22 mV to -40.5 mV. $CO_2$ also caused a change of 0.1 to 0.3 pH unit in the intact leaf. However, this change was absent in isolated epidermis. A vibrating probe was used to detect the change in electrical currents at the surface of excised intact leaves and isolated epidermis. The reading of excised intact leaves in the dark was $0.5\muA\;cm^{-2},$ remaining steady until illuminated. Light increased the current on the surface of excised leaves to about $0.8\muA\;cm^{-2},$. However, light had no effect in the current on the surface of isolated epidermis. Apoplastic pH changes across the stomatal complex in response to light and dark were measured both in the intact leaves and isolated epidermis over the same time period using pH micro-electrodes. The guard cell wall of intact leaf was acidified to 2.5 pH unit, falling from pH 7.5 to pH 5.0 in the first 10 min. in the light. At the same time the guard cell wall pH of isolated epidermis fell from pH 7.5 to pH 7.0 at 10 min. The guard cell wall pH of isolated epidermis incubated in the mesophyll supernatant fell from pH 7.6 to pH 6.7 at 10 min. Likewise, It could be imagined that an electrical signal, chemicals and hormones propagated from the mesophyll in response to light and $CO_2$ could control a fast stomatal response.

Anionic Indicators on the Surface of Submicrospheres Consisting of Ionic Palladium(II) Complex

  • Kim, Cho-Rong;Noh, Tae-Hwan;Yoo, Kyung-Ho;Yoo, Bok-Ryul;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3057-3060
    • /
    • 2009
  • Ionic palladium(II) complex, [($Me_4en)Pd(L)]_2(ClO_4)_4\;(Me_4$en = N,N,N',N'-tetramethylethylenediamine; L = bis-(4-(4-pyridylcarboxyl)phenyl)methane), allows to form a monodisperse submicrosphere without any template or additive. Surface-perchlorates on the submicrosphere have been exchanged by anionic pH indicators such as thymol blue, bromothymol blue, and bromocresol green. The ionic and amphiphilic properties of the palladium(II) complex appear to be primarily associated with the formation and easy surface-anion exchange of submicrosphere. The surface-anion exchange through the electrostatic interaction is a very good tool for the surface-modification. The color of the pH indicator-exchanged submicrospheres is very sensitive to pH and Hg$^{2+}$ cation, and thus they are promising to submicrospherical indicators.

Prevalence of fimA Genotypes of Porphyromonas gingivalis Strains in peri-implant sulcus (임플란트 주위 치주낭내의 Porphyromonas gingivalis 섬모유전형의 출현율)

  • Seo, Dong-Keon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.907-919
    • /
    • 2005
  • Porphyromonas gingivalis is a gram negative. black-pigmented anaerobe, associated with periodontitis & peri-implantitis. Fimbriae(fimA) of P. gingivalis are filamentous components on the cell surface and important in the colonization and invasion of periodontal tissue. But all P. gnigivalis strains don't have equal pathogenicity, inequality among strains originates from different fimA genotype. P. gnigivalis fimA gene encoding fimbrillin(structural subunit of fimbriae) has been classified into 5 genotypes(types I to V) based on the nucleotide sequences. In the present study, we examined the prevalence of these fimA genotypes in patients with dental implant and the relationship between prevalence of these genotypes and a condition of peri-implant tissue. Dental plaque specimens obtained from 189 peri-implant sulci of 97 patients with dental implants were analyzed by 16S rRNA fimA gene-directed PCR assay. P. gingivalis were detected in 86.2% of the alll samples. Among the P. gingivalis-positive samples, a significant difference in the occurrence of typeII was observed between test and the two control groups. In two control groups, typeII fimA were detected in 6.3%(PD<5mm/BOP-). 18.7%(PD<5mm/BOP+). In the test $group(PD{\geqq}5mm/BOP+)$, type II fimA genotype were detected most frequently in 50.0% . And a correlation between specific fimA types and peri-implantitis was found in $typeII(R^2=l.105)$. These results suggest that P. gingivalis strains that possess typeII fimA are gradually increased, as a condition of peri-implant tissue is getting complicated and are closely associated with peri-implant health status. We speculate that these organisms be involved in peri-implantitis

Determination of La in $U_3Si/Al$ Spent Nuclear Fuel by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry에 의한 $U_3Si/Al$ 사용후핵연료 중 La의 분리 및 정량)

  • Han, Sun Ho;Choi, Kwang Soon;Kim, Jung Suk;Jeon, Young Shin;Park, Yang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.601-607
    • /
    • 2000
  • Lanthanum has been used as one of the burnup monitor in spent nuclear fuel. $U_3Si/Al$ spent nuclear fuel contains small amount of La in high concentration of U and Al. Therefore, chemical separation of La is required to remove matrix elements. At first, ion chromatography (IC) and inductively coupled plasma systems were installed in radiation shielded glove box to handle the radioactive samples. Retention behavior of uranium, aluminum, lanthanum and some interesting fission products (Sr, Zr, Y, Mo, Ru, Pd, Rh, Cs, Ba, Ce, Pr, Nd, Sm, Eu and Cd) was investigated using the CG10 column and ${\alpha}$-HiBA eluent. As all elements were eluted earlier than lanthanum in 0.2 M ${\alpha}$-HiBA eluent, a portion of U and Al was directly passed to waste using a three way valve between the column and the nebulizer. Thus it was possible to determine the lanthanum in a high concentration of U and Al matrix. Retention time of La was about 12 minutes in this separation condition. Optimum range for the determination of La in $U_3Si/Al$ spent nuclear fuel was $1-10{\mu}g/L$ (ppb) with this system and detection limit was $0.25{\mu}g/L$ in case of $200{\mu}L$ of sample volume.

  • PDF

FGF-2 inhibits TNF-α mediated apoptosis through up-regulation of Bcl2-A1 and Bcl-xL in ATDC5 cells

  • Kim, Hey-Ryun;Heo, Youn-Moo;Jeong, Kyoung-Il;Kim, Yong-Min;Jang, Hae-Lan;Lee, Kwang-Yeol;Yeo, Chang-Yeol;Kim, Sung-Hoon;Lee, Hak-Kyo;Kim, Seung-Ryul;Kim, Eung-Gook;Choi, Joong-Kook
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.287-292
    • /
    • 2012
  • FGF-2 is involved in cell survival, proliferation, apoptosis, and angiogenesis in a wide variety of cells. FRGRs, PI3K and MAP kinases are well known mediators of FGF signaling. Despite its known roles during many developmental processes, including osteogenesis, there are few known targets of FGF-2. In the present study, we identified Bcl2-A1 and Bcl-xL as two prominent targets involved in promoting cell survival. Pretreatment of ATDC5 cells with FGF-2 increased cell survival, while siRNAs specific for Bcl2-A1 and Bcl-xL compromised the anti-apoptotic effect of FGF-2, sensitized the cells to apoptosis triggered by TNF-${\alpha}$. Chemical inhibition of FGFR, NFkB, and PI3K activity by PD173074, pyrrolidine dithiocarbamate, and LY294002 respectively abrogated the FGF-2-mediated induction of Bcl2-A1 and Bcl-xL expression. Taken together, our data demonstrate that a subset of Bcl2 family proteins are the targets of FGF-2 signaling that promotes the survival of ATDC5 cells.

Effects of Cadmium on Glucose Transport in L6 Myocytes (L6 근육세포에서 포도당 수송능에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang-Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.75-85
    • /
    • 2005
  • This study was aimed to know the effect of cadmium chloride (CdCl₂) on glucose transport in L6 myotube and its action mechanism. CdCl₂ increased the 2-deoxy- (l-3H)-D-glucose (2-DOG) uptake 1.9 and 2.4 fold at 10 and 25 μM respectively. To investigate the stimulating-mechanism of glucose transport induced by CdCl₂, the wortmannin and PD98059 were used as PI3K (phosphatidylinositol 3-kinase) inhibitor and MAPK inhibitor respectively, which did not affect 2-DOG uptake. This fact suggests that CdCl₂ induced 2-DOG uptake may not be concerned to the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, were found to inhibit the 2-DOG uptake stimulted by CdCl₂. In addition, we also measured the ROS (reactive oxygen species) production and GSH level in L6 myotube to investigate the correlation between the glucose uptake and ROS. CdCl₂(25 μM) increased ROS generation approximately 1.5 fold and changed the cellular GSH level, but GSSG/GSH ratio remained unchanged. CdCl₂ stimulated 2-DOG uptake and ROS generation were inhibited by N-acetylcystein. And BSO pretreatment, a potent inhibitor of γ-GCS, resulted in the dramatic decrease of 2-DOG uptake and also the increase of the sensitivity to cadmium cytotoxicity. The obtained results suggest that CdCl₂-stimulated glucose uptake might be based on the activation of HMP shunt as an antioxidant defense mechanism of the cells.