References
- Saxena, R. K., P. Anand, S. Saran, J. Isar, and L. Agarwal (2010) Microbial production and applications of 1,2-propanediol. Ind. J. Microbiol. 10: 2-11.
- Hoffman, M. L. (1999) Metabolic engineering of 1,2-propanediol production in Saccharomyces cerevisiae. Ph. D. Thesis. University of Wisconsin, Madison, WI, USA.
- Altaras. N. E. and D. C. Carmeron (2000) Enhanced production of (R)1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. 16: 940-946. https://doi.org/10.1021/bp000076z
- Carmeron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw (1998) Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14: 116-125. https://doi.org/10.1021/bp9701325
- Behr, A., J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner (2007) Improved utilization of renewable resources: New important derivatives of glycerol. Green Chem. 10: 13-30.
- Anonymous. Chemical profile propylene glycol (PG). www. icis.com.
- Anonymous. (1998) Propylene glycol: Chemical profile. In Chemical Marketing Reporter 254: 33.
- Bennett, G. N. and K. Y. San (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9. https://doi.org/10.1007/s002530000476
- Altaras, N. E. and D. C. Carmeron (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
- Lenth, C. W. and R. N. D. Puis (1945) Polyhydric alcohol production by hydrogenolysis of sugars in the presence of copper-aluminum oxide. Ind. Eng. Chem. 37:152-157. https://doi.org/10.1021/ie50422a011
- Jung, J. Y., E. S. Choi, and M. K. Oh (2008) Enhanced production 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotech. 18: 1797-1802.
- Clomburg, J. M. and R. Gonzalez (2010) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108: 867-879.
- Lee, W. and N. A. DaSilva (2006) Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metabol. Eng. 8: 58-65. https://doi.org/10.1016/j.ymben.2005.09.001
- Amberg, D. C., D. J. Burke, and J. N. Strathern (2005) pp. 199-209 Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring, NY, USA.
- Sherman, F. (2002) Getting started with yeast. pp. 3-41. In: Guthrie, C. and G. R. Fink (eds.). Methods in Enzymology: Guide to Yeast Genetics and Molecular and Cell Biology, Academic Press. San Diego, California.
- Carlson, M. (1999) Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202-207. https://doi.org/10.1016/S1369-5274(99)80035-6
- Etcheverry, T. (1990) pp. 319-329. In: Goeddel, D. V. (ed.) Induced expression using yeast copper metallothionein promoter. Methods in Enzymology: Gene Expression Technology, Academic Press. San Diego, California.
- Koller, A., J. Valesco, and S. Subramani (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast. 16: 651-656. https://doi.org/10.1002/(SICI)1097-0061(200005)16:7<651::AID-YEA580>3.0.CO;2-F
- Torija, M. (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int. J. Food Microbiol. 80: 47-53. https://doi.org/10.1016/S0168-1605(02)00144-7
- Lee, F. W. F. (1996) Amplification and expression of heterologous genes in Saccharomyces cerevisiae. Ph. D. Thesis. University of California, Irvine, CA, USA.
- Avery, S. V., N. G. Howlett, and S. Radice (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62: 3960-3966.